Эта публикация подготовлена по материалам одноименной книги автора, перевод которой выпустит в свет Главная редакция физико-математической литературы издательства «Наука». Под планетой, пригодной для жизни, автор понимает такую планету, на которой могло бы жить много людей, не нуждаясь в сложной защите от окружающей среды и доставке материалов и продуктов с других планет. Перевод с английского И. Щербиной-Самойловой
Температура
Хотя люди, пользуясь одеждой и прочей изоляцией, могут переносить сильнейшую жару и свирепый холод, все же они предпочитают вполне определенный диапазон температур для повседневной жизни. Достаточно взглянуть на карты изотерм и плотности населения, чтобы убедиться в том, что люди предпочитают жить в областях, где средняя годовая температура лежит между 4 и 27о С. Конечно, столь узкий диапазон температур диктуется не только желанием людей жить с удобствами, но также и тем немаловажным фактом, что в этом температурном диапазоне лучше всего себя чувствуют сельскохозяйственные культуры и домашние животные.
Вообще же многие живые существа терпимо относятся к очень высоким или низким температурам. Вот лишь несколько примеров. Некоторые виды сине-зеленых водорослей (особенно Oscyllatoria filiforms) живут почти в кипятке, при температуре воды 85оС. А обычные утки остались в живых после того, как их 16 суток держали на сорокаградусном морозе. Холоднокровные водяные змеи (Nadrix sipedon) мороза, конечно, не выдержат, зато диапазон переносимых ими температур весьма внушителен — от 0 до 43оС. Еще шире этот диапазон у арктической сосны, у которой фотосинтез идет и при -40°, и при +30°С.
К сожалению, большинству пищевых злаков в период вегетации нужна температура от 10 до 30°С.
Свет
Та часть видимого электромагнитного спектра, которую мы называем светом, заключена между длинами волн 380 и 760 ммк. Внутри этой области лежит диапазон зрения большинства животных и, самое важное, — диапазон фотосинтеза. Если освещенность слишком низка, фотосинтез не может идти с достаточной для пользы дела скоростью, а если слишком высока, то рост растения задерживается из-за так называемой соляризации. Эти нижний и верхний пределы освещенности соответственно равны 0,02 и 30 люмен/см2. (Кстати, максимальная освещенность прямым и рассеянным солнечным светом на поверхности Земли равна 15 люменам на квадратный сантиметр.)
Человек достаточно хорошо видит, чтобы перейти из одного места в другое даже при такой низкой освещенности, как 10~9 люмен/см2. Свет причиняет нам боль, если уровень освещенности переваливает за 50 люмен/см2. Но это относится к освещенности поверхности, а не к излучению, проникающему в глаз. Выносливость человека, смотрящего прямо на точечный источник света, куда ниже — около 0,05 люмен/см2.
Нельзя забыть и о периодическом изменении освещения. Рост растений, особенно в умеренных поясах Земли, зависит не только от среднегодового распределения температур, а и от продолжительности дня и ночи. Поэтому большинство пригодных для жизни планет должно получать тепло и свет в основном от одного источника, похожего на наше Солнце.
Тяготение
Медико-биологические эксперименты на больших центрифугах показали, что некоторые люди могут выносить без необратимых изменений мгновенное ускорение в 5g (пятикратное по отношению к нормальному на поверхности Земли ускорению силы тяжести). Такое ускорение сидящий человек, не одетый в специальный костюм, выдерживает всего 2 минуты без потери зрения из-за недостаточного притока крови к глазам. Ускорение в 4g можно выдержать дольше — целых 8 минут.
Участники таких экспериментов сидели неподвижно, не совершали каких-либо действий. О мускульной усталости людей, об ограничениях, накладываемых увеличением гравитационного поля дает представление небольшая таблица, из которой видно, что жизнь, вернее, работа при 2g будет очень трудной.
Время (в секундах), необходимое для того, чтобы проползти 2,3 метра при различной силе тяжести.
|
В Калифорнийском университете в центрифугах довольно долгое время выращивали цыплят, которые теряли в весе, если жили при ускорении в 2,5g. У цыплят быстрее билось сердце, а частота дыхания падала. Конечно, эксперименты на центрифугах с их угловыми скоростями неточно воспроизводят линейное гравитационное поле массивных планет, но все же на основании имеющихся сведений можно сделать вывод, что немногие люди стали бы жить на планете, где тяготение было бы больше 1,25—1,50g.
О нижнем гравитационном пределе для человека говорить рано, так как по существу нет данных*, из которых следовало бы, какой минимальный уровень тяготения необходим нашему организму для нормального физиологического функционирования. (* Экспедиции в космос показали, что человек, но крайнем мере несколько месяцев, может жить в невесомости. — Прим. ред.)
Состав атмосферы
Ясно, что планета должна обладать атмосферой, пригодной для дыхания. Самыми существенными частями атмосферы должны быть кислород и небольшое количество водяного пара. Причем парциальное давление кислорода должно лежать между двумя крайними значениями: нижний предел, за которым наступает гипоксия, и верхний предел, выше которого возникает кислородное отравление.
Где-то возле нижнего предела парциального давления кислорода живут обитатели горняцкого поселка Ауканкильча в Чилийских Андах, который расположен на высоте 5300 м. По-видимому, это самая большая высота, на которой люди живут оседло. Здесь парциальное давление вдыхаемого кислорода всего около 72 мм ртутного столба: тем не менее шахтеры ведут весьма деятельную жизнь. Чтобы попасть в шахту, они ежедневно поднимаются еще на 450 м, то есть до высоты, на которой парциальное давление вдыхаемого кислорода составляет всего 68 мм рт. см. Но даже и эти условия, вероятно, еще далеки от нижнего предела. Ведь альпинисты утверждают, что можно долго жить и неплохо себя чувствовать на высоте 7000 м.
Ну а какую же максимальную концентрацию кислорода мы можем вынести? Верхний предел парциального давления вдыхаемого кислорода лежит возле 400 мм рт. ст., что эквивалентно 56% кислорода в воздухе на уровне моря. В лечебных учреждениях принятый кислородный потолок гораздо ниже — 40%.
Итак, парциальное давление вдыхаемого кислорода на пригодной для жизни планете должно быть больше 60 мм рт. ст., но меньше 400 мм рт. ст.
Следовательно, кислород должны разбавить газы, у каждого из которых есть свои верхний предел парциального давления, предел, который нельзя превышать. Иначе гелий, азот, аргон, криптон и ксенон могут вызвать состояние наркоза. Этим даже пользовались при хирургических операциях: смесь из 80% ксенона и 20% кислорода порождала бессознательное состояние на 2—5 минут. Еще сильнее наркотическое действие углекислого газа. Итак, давление аргона не должно быть больше 1220 мм рт. ст., криптона — 350, ксенона—160, а углекислоты — 7 мм рт. ст. Предполагают, что неон, а возможно, и водород также могут оказаться наркотиками.
Особое место занимает водород: речь может идти только о негорючих смесях водорода и кислорода, но вряд ли возможно одновременное существование больших количеств свободного водорода и кислорода в атмосфере планеты.
Длительные эксперименты с участием людей, которые бы жили в атмосферах, не содержащих инертных газов, до сих пор не проводились, так что нельзя категорически утверждать, что инертные газы не нужны. Эволюция человека шла в атмосфере, содержащей всего 20% кислорода, и возможно, что в определенные периоды жизни какая-то доля инертных газов необходима для правильного функционирования дыхательной системы.
Поскольку углекислый газ необходим растениям, нужно установить какой-то нижний предел его парциального давления на пригодной для нас планете. Нормальная концентрация углекислого газа в земной атмосфере всего 0,03%, что эквивалентно парциальному давлению 0,21 мм рт. ст. Минимальная величина для поддержания нормальной жизни растении пока неизвестна, но, по-видимому, она близка к 0.05— 0,10 мм рт. ст. Необходим и азот, ведь он входит в тело растений и животных. Минимальное его количество, вероятно, невелико, но оно неизвестно.
Другие газы в атмосфере планеты, годной для жизни (например, NH3, H2S, SO2, СО), должны присутствовать в очень малых количествах, в миллионных долях объема атмосферы. Иначе атмосфера будет ядовитой.
Атмосферное давление
Минимальное атмосферное давление на пригодной для жизни планете рассчитать довольно просто: давление атмосферы из чистого кислорода должно быть около 0,15 кг/см2. Максимальное же барометрическое давление, переносимое людьми, пока еще не определено. Например, атмосфера из 2% кислорода и 98% гелия при общем давлении 10,5 кг/см2, теоретически приемлема, но реальное пребывание людей в таких условиях никем не исследовалось. Вероятно, давление атмосферы превышает пределы человеческой выносливости тогда, когда в воздухе, проходящем через носоглотку, возникает сильный турбулентный поток и работа органов дыхания становится утомительной. Утверждают, что под давлением 8 атмосфер турбулентность настолько сильна, что при вдохе через рот ощущаются вихревые течения воздуха.
Обобщая сказанное, можно сделать такие выводы: атмосфера планеты, пригодной для жизни, должна содержать кислород, парциальное давление которого на вдохе лежит между 60 и 400 мм рт. ст., и углекислый газ, парциальное давление которого может варьировать между 0,05 и 7 мм рт. ст. Кроме того, парциальное давление любого инертного газа не должно превышать определенного предела, а отравляющие газы могут присутствовать лишь в виде следов. Кроме всего прочего, нужен газообразный азот, чтобы он в виде соединений мог найти путь к растениям.
Вода.
Человек со всей его экологией очень сильно зависит от воды, поэтому можно категорически утверждать, что пригодная для жизни планета должна обладать большими открытыми водоемами. Ведь без океанов не будет обильных осадков и, следовательно, не хватит грунтовых вод для пополнения запасов текучей пресной воды. Конечно, точно оценить наилучшее отношение площади океана к общей поверхности планеты довольно трудно. Если воды мало, если она присутствует лишь в виде пара или как вода, адсорбированная на поверхности или задержанная в трещинах между твердыми частицами пород, то для людей такая планета мало пригодна. С другой стороны, планету, всю покрытую водой, планету-океан едва ли стоит рассматривать как пригодную для жизни человека.
Весьма существенна для людей и влажность атмосферы. Неприятные последствия высокой влажности и жары вряд ли стоит описывать. Ничего хорошего не сулят и противоположные физиологические эффекты. Сухой воздух быстро обезвоживает слизистые оболочки носа, рта и горла; длительное пребывание при очень низком давлении водяного пара может вообще оказаться смертельным.
Вот и выходит, что на пригодной для жизни планете обязательны открытые водоемы, но их площадь не должна превышать 90% поверхности планеты.
Прочие требования.
Определение «планета, пригодная для жизни человека», означает планету, которая не занята другими мыслящими существами. Мы полагаем, что с более низкими формами жизни человек сможет ужиться, а без фотосинтеза — основы биологического круговорота веществ — даже не сможет обойтись.
Скорости ветров в пригодных для жизни местах планеты должны быть умеренными. Нельзя же нормально жить там, где все время бушует буря (скорость ветра 23 м/сек). В кубометре воздуха должно летать не больше 1,8-109 частиц пыли, а если в ней много кремнекислоты (свыше 50%), то пылевых частиц должно быть в десять раз меньше. Иначе воздух причинит людям вред.
Водоемы — главные собиратели носящейся в воздухе пыли. Образование водяных капелек на ядрышках пыли — главный способ очистки атмосферы. Отсюда следует, что на планете с обширными океанами атмосфера не особенно запылена, а на планете, на поверхности которой преобладает суша, будет действительно очень пыльно. Радиоактивность или ионизирующая радиация тоже могут сделать планету нежилой. Из генетических соображений желательна небольшая доза естественного фонового облучения — менее одного рентгена в год или приблизительно 0,02 бэр (биологический эквивалент рентгена) в неделю. (Средняя интенсивность естественной фоновой радиации на поверхности Земли около 0,003 бэр в неделю.) Планета может быть непригодна для жилья и из-за слишком частых падений метеоритов, слишком сильной вулканической деятельности, слишком частых землетрясений или чрезмерной электрической активности.
Основные признаки планеты, пригодной для жизни
Какими же параметрами должна обладать планета, на которой могло бы жить много людей, без чрезмерной защиты от окружающей среды и независимо от доставки материалов с других планет?
Масса обязательно больше 0,4 массы Земли, чтобы могла образоваться и сохраниться пригодная для дыхания атмосфера, но меньше 2,35 масс Земли, чтобы ускорение силы тяжести на поверхности было меньше l,5g.
Возраст планеты (и звезды, вокруг которой она движется по орбите) должен превышать 3 млрд. лет, чтобы хватило времени для появления сложных форм жизни и создания пригодной для дыхания атмосферы.
Период вращения не должен превышать 96 часов (4 земных суток); это гарантирует от чрезмерно высоких температур днем и крайне низких температур ночью.
Наклон оси вращения (наклон экватора к плоскости орбиты) и освещенность планеты взаимосвязаны, от этого зависит распределение температуры на ее поверхности. Величина освещенности при малых наклонах должна лежать между 0,65 и 1,35 от освещенности на Земле, хотя сочетание большой освещенности (в 1,9 раза больше, чем на Земле) и большого наклона экватора (вплоть до 81°) совместимо с требованиями жизни.
Эксцентриситет орбиты должен быть меньше 0,2, иначе создастся неприемлемое распределение температур на поверхности планеты.
Масса главного тела (звезды, вокруг которой обращается планета), с одной стороны, не должна превышать 1.43 массы Солнца, а с другой стороны, должна быть больше 0,72 массы Солнца, так как только в этом случае возможны допустимые уровни освещенности и приливного замедления вращения планеты. Для особых планет с крайне большими или близкими спутниками можно уменьшить нижнюю границу допустимой массы главного тела до 0,35 массы Солнца.
Если планета движется по орбите в двойной звездной системе, то две звезды должны находиться либо совсем рядом, либо очень далеко друг от друга. Только в этих случаях возможны устойчивые планетные орбиты и небольшая изменчивость в освещенности.
Если все эти условия выполнены, то весьма велика вероятность того, что планета пригодна для жизни людей.
Расчеты говорят, что возле 0,47% всех звезд есть пригодные для жизни планеты, а среди звезд классов F2—KI у 3,7% обращаются планеты, пригодные для жизни человека. Согласно нашей оценке, одна пригодная для жизни планета приходится на каждые 2480 куб. парсеков, если считать, что свойства звезд в близких к нам областях Галактики характерны для Галактики в целом. Поскольку объем нашей Галактики около1,6 х 1012 куб. парсеков, то число пригодных для жизни планет близко к 600 миллионам. И это только в нашей Галактике!
На расстоянии в 100 световых лет от Земли (расстояние небольшое, если учесть, что толщина Галактики в центре превышает 10 000 световых лет, а диаметр 80 000 световых лет) должно быть примерно 50 пригодных для жизни планет. Среднее же расстояние между звездой с пригодной для жизни планетой и ее ближайшей аналогичной соседкой — около 24 световых лет.
Ближайшие кандидаты
Из 100 самых близких звезд (плюс одиннадцать их невидимых компаньонов), находящихся от Солнца в пределах 22 световых лет, формально 43 звезды могли бы обладать пригодными для жизни человека планетами. Однако, кроме 14 звезд, остальные так малы, что у них планета, пригодная для жизни, могла бы быть только в том очень редком случае, если у этой планеты обращаются большие и близкие спутники, которые помогают ей сохранить скорость вращения. Прочие 68 звезд не подходят по следующим причинам: у трех из них (Сириуса, Проциона и Альтаира) слишком большая масса, и поэтому жизнь их слишком скоротечна; семь — белые карлики, и вокруг них жизни быть не может; 57 звезд слишком малы, они либо затормозили вращение планет, либо порождают приливы разрушительной силы на тех планетах, вращение которых поддерживается за счет близкого спутника; одна звезда (40 Эридана А), хотя и приемлема с других точек зрения, не подходит потому, что она член двойной системы в паре с белым карликом.
Четырнадцать наиболее перспективных кандидатов приведены в таблице по порядку увеличения их расстояния от Земли. Вероятность же того, что по крайней мере одна пригодная для жизни планета есть возле этих четырнадцати звезд, составляет 43%.
В самой близкой к нам звездной системе-—Альфа Центавра — вероятности для компонентов А и В равны 0,054 и 0,057 соответственно; для системы эта вероятность вырастает до 0.107, а это говорит о том, что есть одни из десяти шансов, что в системе Альфа Центавра можно найти планету, пригодную для жизни.