Статья написана по материалам лекции доктора биологических наук В.В.Чуба (кафедра физиологии растений биофака МГУ) «Как создать виртуальное растение» на зимней научной школе «Современная биология и биотехнология будущего» в январе 2014 года.
Талант тоже строго ограничен рамками. Ощущение этих рамок навевает легкую грусть. И в то же время как-то непроизвольно вызывает умиление. Это как если поймешь, что бамбук — это бамбук, а дикий виноград — дикий виноград.Акутагава Рюноскэ
Оставим пока в стороне вопрос о том, почему таланты, да и простые смертные, не похожи друг на друга и обладают индивидуальностью. Но почему, в самом деле, бамбук — это бамбук, а дикий виноград — дикий виноград? И почему, когда оплодотворенная зародышевая клетка в завязи начинает делиться, образуется не бесформенная клеточная масса, а корешок, стебелек и листья, а потом появляются цветок и плод с семенами, и все это именно такое, как предписали данному виду природа и Карл Линней?
Почему листья у одних растений простые и узенькие, а у других пальчато-лопастные, об этом как-нибудь в другой раз. Для начала поставим элементарный вопрос, в который, однако, уместится значительная доля всего растительного многообразия: как регулируется расположение листьев на стебле, чашелистиков, лепестков, тычинок и пестиков в цветке? У хрена и сурепки четыре лепестка, за что их и зовут крестоцветными. У розоцветных, например яблони, — пять, однако у садовых роз лепестков много, «бессчетное количество». Все перечисленные — двудольные цветковые растения, а вот у однодольных (нарцисса, лилии, тюльпана...) шесть листочков околоцветника, похожих на лепестки, причем расположены они в два круга: три в нижнем, три в верхнем. Что касается листьев, даже те, кто не очень любили ботанику, наверное, помнят со школьных лет: очередное листорасположение, супротивное (по два листа в каждом узле), мутовчатое (больше двух, как у вороньего глаза). И как это получается? Какая сила располагает органы растения именно так, а не иначе?
Спирали Фибоначчи, кривые Гаусса и генные сети
Научно-популярные журналисты любят рассказывать о таинственной связи листорасположения и чисел Фибоначчи. Этот ряд чисел, каждый следующий член которого — сумма двух предыдущих (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144) обладает многими замечательными свойствами. Например, если замостить плоскость квадратами с длинами сторон, равными числам Фибоначчи, приставляя больший к меньшему, как показано на рисунке, а затем соединить их противоположные углы дугами с радиусом, равным длине стороны, получится красивая спираль. Подобные спирали мы часто видим в природе: вдоль спиральных линий выстраиваются чешуйки на шишке или цветки, образующие сердцевину ромашки. (Еще одна истина из школьного курса ботаники: ромашка относится к сложноцветным, то, что мы называем ее цветами, на самом деле соцветия из желтых простых цветков в середине и белых язычковых цветков по краям.) Интересно, что в сердцевине «цветка» можно увидеть спирали, закрученные по часовой стрелке и против часовой, при этом количества тех и других относятся друг к другу как числа Фибоначчи. Листья на побеге, ветки на стволе дерева тоже часто располагаются по спирали. Можно представить такой побег как подобие корзинки ромашки, вытянутой по вертикали, с одним или несколькими спиральными рядами листьев вместо цветков.
Один из возможных механизмов, с помощью которого один морфоген может направлять развитие клеток по различным путям, первым предложил в 70—80-е годы ХХ века Льюис Вольперт, британский специалист по биологии развития, — так называемую модель трехцветного флага. Концентрация сигнального вещества при удалении от центра, в котором оно синтезируется, убывает плавно, но клетки реагируют только тогда, когда она превышает определенные пороговые значения.
Если таких порогов два, одно и то же вещество может направить развитие клетки по трем путям, включая различные варианты генной активности. Важно, что команда, полученная клеткой, определяется ее положением относительно зоны, посылающей сигнал: например, ближние участки, где концентрация морфогена максимальна, станут красными, самые удаленные — синими, промежуточные — желтыми. Таким образом, у нас появляется понятие о позиционной информации: судьба клетки, роль, которую она сыграет в развитии, определяется ее положением.
Экспериментальные подтверждения для этой гипотезы получил сам Вольперт, правда, не на растительной, а на животной модели — изучая развитие конечности цыпленка. Рядом с группой клеток, из которой будет развиваться крыло, была найдена так называемая зона поляризующей активности, которая посылает химический сигнал, определяющий номера пальцев. Эксперименты по пересадке этой зоны подтвердили и сам эффект, и его зависимость от концентрации. Куда бы ни пересаживали этот маленький участок, там вырастали и пальцы с самыми большими номерами.
Кроме позитивных сигналов могут быть и негативные — останавливающие (ингибирующие) развитие, причем их может рассылать та же самая группа клеток. Вещество-активатор запускает развитие органа, выделение ингибитора его останавливает. При моделировании можно так подобрать скорость синтеза и распространения сигнальных веществ, что концентрация активатора превысит концентрацию ингибитора лишь на небольшом участке. Для чего это нужно, понятно: чтобы органы в своем развитии и дальнейшем существовании не мешали друг другу. Именно по этой схеме формируется волосок на листе растения: активатор запускает его рост, потом ингибитор движется в соседние клетки и запрещает им отращивать волоски. Для некоторых растений уже известны продукты генов, участвующих в этом процессе.
Самые важные активаторы морфогенеза у растений — фитогормоны ауксины, а наиболее распространенный ауксин — индолилуксусная кислота (ИУК). В тех группах клеток, где концентрация ауксина выше, идут клеточные деления, рост растяжением. Потоки ауксина могут направлять сами клетки: ауксин проникает внутрь клетки пассивно, а выкачивают его наружу белки-насосы PIN. Эти потоки размечают будущие формы растения: там, куда они стремятся, развиваются зачатки листьев или органов цветка. На какой стороне клетки появляются PIN (а растительная клетка, как большинство биообъектов, очень изменчива), туда и направляется ауксин.
Чтобы лучше понять, как работает тот или иной механизм, ученые смотрят, что происходит, когда он сломан. У любимого модельного растения генетиков Arabidopsis thaliana (по-русски резуховидка Таля, но с легкой руки «лабораторных» биологов его и по-русски все чаще называют арабидопсисом) есть мутация pin1-1. Такие мутанты растут только вверх, давая длинные побеги странного вида, без цветов и листьев.
У них поврежден тот самый белок PIN1, который должен был активно выкачивать ИУК из клеток, направляя его в нужные стороны. Собственно, по этой мутации, от английского pin-formed — «похожий на булавку», белок и получил название. Но если
нанести на кончик побега немного пасты, содержащей ИУК, в этой точке начнет формироваться лист или цветок.
Дальше развивающиеся жилки пытаются использовать ауксин из ближайшей точки, а те, кто «не успел», поворачивают в другую сторону. Таких простых начальных условий оказалось достаточно для получения сложных рисунков жилкования, очень близких к реальности.
Эти программы сразу оценили создатели компьютерных игр — они не могут, подобно герою рассказа Толкиена, рисовать всю жизнь один лист, им надо прямо сейчас запустить персонажа в лес, шелестящий сотнями индивидуальных листьев. Но в настоящем растении, конечно, все происходит не так. Ауксин не может быть рассыпан отдельными крупинками, его источники располагаются совершенно иначе.Известно, что ауксин движется по растению в целом сверху вниз: от апикальной меристемы (верхушечного конуса нарастания; меристемами вообще называются недифференцированные, активно делящиеся ткани растения) к корням. Известно также, что потоки ауксина имеют тенденцию притягиваться друг к другу и сливаться: если клетка «чувствует» неподалеку мощный поток ауксина, она перенаправляет в ту же сторону и свой. (Садоводам и огородникам хорошо знаком эффект апикального доминирования: верхушечная точка роста подавляет боковые, и, если верхушку побега не отщипнуть, растение будет расти ввысь и слабо ветвиться.) Помимо деления ауксин стимулирует рост клеток, вытягивание их в длину с размягчением клеточной стенки. Растения — удивительные существа: они растут, и порой очень быстро, хотя состоят из жестких структурных единиц, их клетки покрыты целлюлозной оболочкой и достаточно прочно связаны с соседями.
Что касается закладки листьев и лепестков, самое интересное происходит в зоне апикальной меристемы. Именно там задается взаимное расположение листьев — по мере вытягивания стебля увеличится только расстояние между узлами. Анатомия этой зоны у цветковых растений неплохо изучена. Верхушку покрывают несколько слоев клеток (обычно три), которые называют туникой, под ними — не так строго ориентированные клетки корпуса. В тунике выделяют также центральную и периферическую зоны меристемы. Их клетки различаются морфологически, кроме того, опыты с введением в клетки красителей показали, что межклеточные контакты открыты в пределах центральной зоны и периферической зоны, а между этими зонами — закрыты, то есть они не обмениваются сигнальными веществами. Под центральной зоной находится организационный центр, в котором клетки делятся слабо, поскольку основная его функция — управление ростом меристемы. Если какие-то клетки меристемы повреждены, организационный центр может пополнить их запас; поэтому раньше его называли «меристемой ожидания».Клетки меристемы постоянно ведут «переговоры», пересылая друг другу сигнальные белки, короткие пептиды и РНК. В этом процессе множество участников, каждый со своей важной ролью, и подробное их описание мы пропустим, тем более что у разных видов картина различается. Генные сети чем-то похожи на сериалы-эпопеи вроде некогда знаменитой «Санта-Барбары» или «Игр престолов» по Джорджу Мартину. Кажется, что невозможно выучить всех этих малоразличимых героев и злодеев, их врагов и родичей, но проходит первый сезон, и мы уже спорим, кто из них плохой, а кто хороший, кто кому приходится незаконным сыном и кто что замышляет. В сложных взаимоотношениях сигнальных веществ меристемы тоже можно разобраться, но это требует времени.
В качестве «трейлера к сериалу» можно сказать, например, что в организационном центре у арабидопсиса экспрессируется ген WUSCHEL (WUS), активирующий ген CLAVATA 3 (CLV 3) в центральной зоне, а его продукты, в своюочередь, сложным путем подавляют экспрессию WUS (отрицательная обратная связь). Продукт гена ARGONAUTE10, — он же PINHEAD (PNH), он же ZWILLE (ZLL), — активирует работу гена WUS, который поддерживает клетки в недифференцированном состоянии, и он же участвует в определении «верхней» и «нижней» сторон листа. Гены WUS и PNH/ZLL, возможно, также контролируют потоки ауксина и создают позиционные сигналы для будущих листьев, отмечая места их закладки. Клетки в этой области начинают делиться в плоскости, параллельной поверхности, — начинается рост наружу, появляется выступ, который затем становится листом.Зачатки органов растений ботаники называют «примордиями» — это слово ужасно смешит неспециалистов, но мы его будем иногда использовать. В примордиях листьев также активен ген ANT, а гены CUC 1, CUC 2, UFO задают границу примордия.
Теперь перейдем к математическим моделям, которые покажутся нам простыми после нередуцируемой биологической сложности. Как сказал один физик, изучавший теплообмен живых объектов: «Сначала мы считали лосей шарами, но теперь рассматриваем их как цилиндры» (А.Н.Горбань, Р.Г. Хлебопрос. Демон Дарвина. Идея оптимальности и естественный отбор. Москва: Наука, 1988). Биологи над физиком смеялись, и напрасно: если считать лосей лосями, расчет может затянуться надолго, и еще неизвестно, насколько улучшится результат.
План побега
Вспомним еще раз, что нам известно о закладке листьев. В апикальной меристеме (верхушечном конусе нарастания) есть участки, синтезирующие сигнальные вещества, и, что не менее важно, есть участки, к этим веществам восприимчивые. Бывают сигналы, активирующие рост листа в данной области, и другие, отменяющие действие активаторов (ингибиторы), в зоне действия которых лист не сможет вырасти. Очевидно, что зона активации роста
должна быть окружена зоной ингибирования, чтобы листья не наезжали друг на друга: лист, уже начавший расти, сообщает соседним клеткам, что место занято, размечено под будущий лист. Логично предположить, что второй лист вырастет настолько близко к первому, насколько позволит зона ингибирования: природа не любит пустоты. Примордии листьев рассылают сигналы, клетки реагируют на них, включая генные сети, и таким образом определяется, что и где вырастет, — осуществляется разметка будущих органов.
Пусть растущий побег — это цилиндр с полусферой на верхнем основании, которая изображает меристему. Какие параметры здесь важны? Во-первых, размеры меристемы — ее радиус R. Во-вторых, размеры зоны, восприимчивой (компетентной) к воздействию сигналов, — зоны, где будут размечаться листья. Как мы видели на предыдущих рисунках, это некое кольцо вокруг верхушки побега, которое можно изобразить окружностями с радиусами Rmin и Rmax. Между этими окружностями возникают зачатки органов — примордии. Точка Р — медиана примордия. Нужно также обозначить размеры минимального пространства, необходимого для разметки органа (d0), радиус сферической зоны ингибирования D, в пределах которой примордии не возникают, и скорость роста побега dH.
Теперь запустим программу, заставим побег расти и формировать листья. Выясняется изумительная вещь: тип листорасположения зависит от соотношения всего двух параметров — радиуса меристемы R и радиуса ингибирующей зоны D, причем разметка примордиев в компетентной зоне полностью определяет облик побега, который формируется в дальнейшем. Меняя эти параметры, можно получить известные в природе типы листорасположения, а также переходные формы между ними.Возьмем случай, когда D существенно больше R — более чем в два раза. В этом случае модель предсказывает двурядный филлотаксис, или строгую дистихию, — в каждом узле находится один лист, при этом каждый образует с предыдущим угол в 180о, так что ветвь с листьями выглядит плоской. Почему так выходит, легко догадаться. Первая же зона ингибирования накрывает всю меристему, поэтому второй лист на этом уровне возникнуть не может. А возникнет он, естественно, на противоположной стороне: как только зона компетентности, поднимаясь по мере роста, высвободит из зоны ингибирования окошко не меньше d0. Такое листорасположение наблюдается у комнатного растения дихоризандры королевской Dichorisandra reginae, как, впрочем, и у многих других традесканциевых.
Если радиус ингибирующей зоны D будет чуть меньше, чем 2R, на смену строгой дистихии приходит спиродистихия — прямые линии листорасположения перекручиваются, листья располагаются по спиралям. Оказалось, что такая модель — две спирали, наложенные друг на друга, — лучше всего описывает реально наблюдаемое листорасположение. Традиционное представление об одной спирали, подчиняющейся дробям Фибоначчи, здесь явно не подходит.
Филлотаксис, предсказанный этой моделью, можно наблюдать у видов рода Сordyline и других объектов.
При дальнейшем уменьшении ингибирующей зоны она перестанет перекрывать всю меристему на своем уровне, и два листа смогут возникнуть друг напротив друга. В школьных учебниках это называется супротивным листорасположением, оно наблюдается, например, у сирени. Почему каждая новая пара листьев повернута относительно предыдущей на 90о, догадайтесь сами. Если ингибирующие зоны станут еще меньше, то на одном уровне смогут возникнуть сразу три (при D=1,2R) или четыре листа (при D=R) — реализуется мутовчатое листорасположение.
А что хорошо для мутовок листьев, то хорошо и для лепестков с чашелистиками: очевидно, эти органы могут размечаться точно так же. Этот подход позволил авторам обратить внимание на странные цветки с нетипичным для данного вида расположением лепестков — следствием мутации или сбоя программы на физиологическом уровне. Все мы знаем «счастливые» пятилепестковые цветки сирени, которые встречаются среди четырехлепестковых не то чтобы часто, но и не так редко, чтобы надоело искать. Изредка попадаются нарциссы с пятью «лепестками» вместо шести (как мы уже упоминали, у нарцисса это на самом деле не лепестки, а листочки околоцветника). Такие цветки иногда бывают некрасивыми, кривоватыми.Математическая модель предлагает хорошее объяснение: промежуточные величины диаметров зоны ингибирования, из-за чего в одном круге размещаются, например, не пять лепестков, а всего четыре. Или «четыре с половиной»: углы между четырьмя слишком велики, а пятому недостаточно свободного места. Цветок нарцисса обладает трехлучевой симметрией (не шестилучевой, потому что его шесть листочков околоцветника расположены не в одном круге, а двумя кругами по три). Поэтому пятилисточковый нарцисс логично было назвать «2,5-мерным». По словам Владимира Чуба, ботаников сначала возмутил этот термин, однако в конце концов они признали его право на существование.
Изучение аномальных цветков интересно еще и потому, что оно дает ключ к некоторым спорным моментам эволюции цветка. Так, математическое моделирование показывает, что пятимерные цветки едва ли могли возникнуть из шестилепестковых тримерных через потерю одного лепестка и сведение оставшихся в один круг. Скорее всего, трехлепестковый тримерный цветок сначала стал тетрамерным, с четырьмя осями симметрии, а потом уже пентамерным.
На следующем рисунке представлены переходы от одного вида симметрии к другому в пределах рода. Традесканцию многие выращивают дома или в офисе, но не каждый видел ее цветок; в норме он имеет три лепестка. Хионодоксе из семейства гиацинтовых полагается шесть листочков околоцветника в двух кругах, как и лилейнику.Когда в модели уменьшали радиус ингибирующей зоны от D от 1,2 до 1,0 (если принять R за единицу), тримерный цветок через ряд последовательных нетипичных» форм превращался в тетрамерный (восьмилепестковый или восьмилисточковый). Любопытным оказалось строение цветка гортензий. В их стерильных цветках задачу привлечения опылителей выполняют чашелистики, а не лепестки. Один из лепестков, которые в норме мельче и закладываются выше, становился в круг чашелистиков. Полный ряд форм удалось отыскать в природе у гортензии древовидной Hydrangea cinerea.
Можно не только увеличивать число лепестков в круге, но и увеличивать число самих кругов — «тянуть за макушку» цветок, заставляя его расти и надстраивать новые ярусы органов; на языке модели — вводя скорость роста dH, не равную нулю. Так можно получить некоторые махровые цветки. В предельном случае цветок растет вверх до исчерпания клеточного материала, который весь превращается в лепестки; у такого цветка не будет генеративных органов — пестиков и тычинок.
О пестиках и тычинках
Цветок — это все же не побег с листьями, и рост вверх у него часто бывает ограничен генетическими факторами. Поэтому, чтобы показать, каким образом апикальная меристема приобретает структуру цветка, в модель необходимо внести коррективы. Скорость роста вверх, то есть dH, принимаем равной нулю, а возможность расширяться обозначим как dR.
Рост вверх в какой-то момент остановится, значит, разметить нужно всю меристему. Поэтому была введена возможность смещения верхней границы разметки органов вверх (dRmin) и верхушечная зона разметки с радиусом R3 и возможностью расширения — dR3. Круговую зону авторы модели назвали базипетальной, кольцевую — акропетальной (базипетальный у ботаников означает «направленный от верхушки к основанию стебля», акропетальный — «направленный к верхушке»).
Зачем понадобилась базипетальная зона? Ведь известно, что органы цветка закладываются снизу вверх: чашелистики, лепестки, тычинки, пестик или пестики. Однако не исключено, что разметка органов, то есть сигналы «здесь расти, а здесь не расти», выстраивается заранее, не в той же самой последовательности, в которой органы начинают формироваться. А проверить это важно: как мы убедились, разметка первых органов определяет расположение всех последующих.Конечно, всем интересно, как это происходит у арабидопсиса: его генетика хорошо изучена и было бы заманчиво привязать разметку и закладку органов цветка к активности генных сетей. «Классический», описанный в учебнике цветок арабидопсиса имеет формулу, достаточно типичную для крестоцветных: Ч4 Л4 Т4+2 П2. Буквы обозначают соответственно чашелистики, лепестки, тычинки и пестики, а «4+2» — что четыре тычинки у него длинные, а две короткие. Но попадаются цветки арабидопсиса без одной короткой тычинки (Ч4 Л4 Т4+1 П2), реже без обеих коротких тычинок (Ч4 Л4 Т4 П2) или даже с одной дополнительной длинной и без коротких (Ч4 Л4 Т5 П2). Среднее число тычинок в цветках арабидопсиса дикого типа всегда меньше шести!
В семействе крестоцветных вариации числа органов — не редкость. В целом можно сказать, что у них наиболее стабильны регионы гинецея (из него вырастет пестик) и чашелистиков, а самый вариабельный — регион коротких тычинок. Можно предположить, что стабильные участки — одинаковые в большинстве цветков — размечаются первыми, а вариабельные — последними, «по остаточному принципу», отчего, они и оказываются вариабельными. Тогда введение базипетальной зоны, расширяющейся навстречу акропетальной, выглядит вполне логичным. А между ними попадают тычинки, размечаемые в последнюю очередь.
Участки меристемы, не занятые лепестками и пестиками, размечаются, «как получится», подобно остаткам теста для пирожков: когда выйдет шесть штук, когда пять или четыре... Такая вариабельность для цветка не катастрофична: лучше уж пусть не хватает какой-то тычинки, чем пестика.
Модель проверили на цветках обыкновенного ревеня Rheum из семейства гречишных. Ревень в данном случае хорош обилием материала — у него огромное множество мелких цветочков. На этот раз исследователи не придумывали модель, наиболее похожую на реальный цветок (что всегда немного напоминает подгонку), а пошли от противного: построили все возможные модели разметки меристемы, чтобы проверить, какая из них ближе к реальности.
Моделей получилось четыре. Первая, обозначенная буквой А (от «акропетальная»), предполагала разметку органов снизу вверх, в порядке наблюдаемого их формирования, от чашелистиков к плодолистикам. Модель Б2 соответствовала данным об активности генов меристемы: в ней чашелистики и лепестки размечались снизу, а плодолистики и тычинки — сверху. Модели Б1 (тычинки размечаются вместе с околоцветником) и Б3 (часть тычинок размечается сверху, часть снизу) представляли остальные теоретически возможные варианты. Компьютерные модели цветков предъявляли на оценку экспертам-ботаникам, чтобы те оценили их реалистичность.Все модели, кроме Б1, дали хорошие решения для «правильного» цветка ревеня. Но лучшей оказалась модель Б3, где тычинки размечались последними, и сверху, и снизу. Прелесть ее была не только в том, что цветок получался каким надо при самом широком варьировании параметров, — даже когда появлялись отклонения, они соответствовали «неправильным» цветам, наблюдаемым в природе. Другие же модели даже при меньших отклонениях очень сильно меняли положения тычинок.
Проверить экспериментально результаты, полученные на виртуальных растениях (например, обнаружить включение синтеза и распространение неких сигнальных веществ именно в такой геометрии), пока не удалось. Процессы, связанные с разметкой органов, протекают стремительно, «остановить мгновение» непросто. Но ценно уже то, что модель подсказывает, что искать, в каком направлении двигаться дальше. «С этой моделью играли ботаники, и после этого они смотрели на цветок совершенно другим взглядом, — рассказывает Владимир Чуб. — Видят в нем зоны разметки, точки, из которых вырастут органы. Пытаются это разглядеть на сканирующих фотографиях, начинают это обсуждать. Что еще может сделать эта модель? Иногда попадается цветок уникальной архитектуры, и второго такого нет на всей плантации. Хочется понять, как он развивался, и эта модель позволяет "отмотать назад" процесс его развития, показать, как бы это могло быть. Моделирование любого процесса в компьютере позволяет ответить на главный вопрос: правильно ли мы представляем себе процесс морфогенеза у растений, и если правильно, то каких данных не хватает, какие еще наблюдения нужно провести? И конечно же это экономит силы, средства и нервы экспериментаторам».
Чуб В.В., Юрцева О.В. Математическое моделирование формирования цветка у представителей семейства Polygonaceae. «Ботанический журнал», 2007, 92, 1, 114—134.-
Скрябин К.Г., Алексеев Д.В., Ежова Т.А., Козлов В.Н., Кудрявцев В.Б., Носов М.В., Пенин А.А., Чуб В.В., Шестаков С.В., Шульга О.А. Определение типа и положения органов цветка: динамическая модель развития. «Известия АН. Серия биологическая», 2006, 33, 6, 523—535.