Метановый урок пандемии

Любовь Стрельникова

pic_2023_03_23.jpg
Иллюстрация Петра Перевезенцева
Пандемия ковида закончилась полтора года назад, хотя мне кажется, что это было очень давно. Но ее уроки наука будет изучать еще долго. В сущности, это был глобальный эксперимент по взаимодействию человечества с окружающей средой.

Множество стран как дружный хор по команде дирижера заглушили моторы и двигатели транспорта, приостановили работу предприятий и резко снизили производство там, где остановить заводы нельзя. В результате антропогенная и техногенная нагрузки на природу сразу и резко упали, причем в разы.

Достаточно сказать, что от 200 тысяч авиарейсов в допандемийные сутки в июне 2018-го осталось всего 19 тысяч в июньский день 2019-го, то есть количество уменьшилось в десять раз.

И результат не замедлил проявиться. Уже буквально через месяц миссия Copernicus Sentinel-5P Европейского космического агентства, вращающаяся на орбите, зафиксировала, что резко уменьшились выбросы оксидов азота над промышленными территориями, например — над Китаем или Северной Италией. Картинки, полученные с этих спутников, из буро-коричневых превратились в бледно-желтые. А еще через месяц и вовсе стали голубыми.

Иными словами, атмосфера быстро очистилась и вернулась к своей природной чистоте. То же самое произошло с реками и водоемами. Фото с каналами Венеции с прозрачнейшей водой облетели все соцсети. А уж как были счастливы жители Венеции, наверное — наконец-то они смогли выспаться в тишине.

Этот урок показал, насколько велика способность природы к быстрому самоочищению, что было не очевидно для многих.

Однако некоторые перемены поставили исследователей в тупик. В 2020 году, когда мир еще был парализован пандемией ковида, содержание метана в атмосфере выросло до рекордного уровня. Казалось бы, мировая экономика замедлилась, промышленность почти не работает, транспорт почти не ходит, почти не летает, количество загрязнителей в воздухе уменьшилось, но содержание метана почему-то растет. Сначала оно побило рекорд в 2019 году, а затем — в 2020-м. В чем же дело?

Стоит напомнить, что метан действительно не безобидный парниковый газ. Конечно, его в атмосфере меньше, чем углекислого газа или водяного пара. Но его парниковая активность в 25–30 раз больше, чем у СО2. Исследователи считают, что почти 30% потепления, наблюдаемого с начала индустриальной эпохи, объясняется ростом концентрации этого химического соединения в атмосфере.

Недавно международная группа исследователей пролила свет на это парадоксальное явление. Оказалось, что парадокса нет. Метан окисляется в атмосфере, превращаясь в воду и углекислый газ. Собственно, благодаря этому фотохимическому окислению он живет в атмосфере недолго, 10–12 лет. Однако во время ковидной изоляции уменьшились выбросы и оксида углерода, и оксидов азота, концентрация гидроксильных радикалов упала, то есть атмосфера стала менее окислительной.

Получается, что чем чище воздух, чем меньше в нем загрязняющих веществ, тем больше в нем будет содержание метана. А он, как мы помним, в десятки раз более сильный парниковый газ, нежели СО2.

Еще одна причина рекордного роста метана в пандемийные годы — необычно теплые и влажные условия над болотами и торфяниками в Северном полушарии. В результате естественный поток CH4 из этих районов увеличился.

Здесь работает положительная обратная связь: чем теплее климат в Северном полушарии, тем больше выбросы метана из болот, который еще больше разогревает климат.

Это еще одна иллюстрация к моему любимому тезису, что в этом мире всё связано со всем и всё суть причина и следствие. Природа поддерживает на Земле и в атмосфере тонкое равновесие, которое хрупко. Стоит из этой равновесной системы вывести компоненты или уменьшить их содержание, как система тут же выстрелит неожиданным следствием.

Разные разности
Желтки против пожелтения
Пробы красочного слоя, взятые с картин художников эпохи Возрождения, показали, что в них помимо пигментов и масла присутствуют еще и небольшие следы белка, который мог попасть в краску вместе с желтком. Действительно точно известно, что Леонардо да&n...
Споры против полиуретана
Ученые создали биоразлагаемый материал с помощью почвенных штаммов бактерии Bacillus subtilis, способных разрушать термополиуретан. Решение очень простое — подмешать бактерии к полимерам. Причем не сами бактерии, а их споры, которые остаютс...
Бактериофаги против дезодорантов
Метагеномный анализ кожной флоры позволил найти главного злоумышленника, виновного в резком запахе пота — это бактерии Staphylococcus hominis. Но можно ли от них избавиться, не убивая другие кожные бактерии? Исследователи предложили логичное реш...
Липучка против трипсов
Химики ищут замену инсектицидам, подсматривая за тем, как разные растения сами защищаются от вредных насекомых. Некоторые растения выделяют липкие вещества из так называемых железистых волосков. К ним прилипают насекомые-вредители и погибают. Эта стр...