Нобелевский аккумулятор

С.М. Комаров
(«ХиЖ», 2019, №11)

pic_2019_11_14.jpgПремию по химии за 2019 год Нобелевский комитет присудил американцу Джону Гуденафу (Оксфордский университет, Великобритания), англичанину Стэнли Уиттингему (Университет штата Нью-Йорк в Бингемтоне, компания «Эксон», США) и японцу Ёсино Акире (Нагойский университет Мэйдзё, корпорации «Асахи Касеи», Япония). А создали они своими совместными усилиями одно из чудес двадцатого века — литий-ионный аккумулятор. Тот самый, что обеспечил информационную революцию первого десятилетия века двадцать первого.

Все мобильные средства связи получили такое распространение именно благодаря стремительному прогрессу источников энергии, ведь еще в середине девяностых мобильный телефон был редкостью и представлял собой увесистый чемоданчик, который нужно было носить в руке, но никак не в кармане или дамской сумочке. Аккумуляторную революцию начала компания «Сони», и относительно недавно, в начале 90-х, она стала использовать литий-ионные аккумуляторы в своей переносной электронике. В общем, если бы не работы лауреатов 2019 года, не было бы у нас всего того разнообразия мобильных устройств, а связь осуществлялась преимущественно через стационарные компьютеры и телефоны. Что же сделал каждый из этих исследователей? Вот как на этот вопрос отвечает член-корреспондент РАН Е.В.Антипов, заведующий кафедрой электрохимии химического факультета МГУ имени М.В.Ломоносова, который и сам сотрудничал с нынешними нобелевскими лауреатами:

«Стэнли Уиттингем в 70-х годах XX века показал возможность обратимого внедрения-извлечения лития в слоистых сульфидных материалах переходных металлов. В отличие от кислотных аккумуляторов, где вещества преобразуются, растворяются, эти сульфидные материалы работают без изменения кристаллической решетки. В них изменяется концентрация ионов лития и, соответственно, количество электронов в зоне проводимости, а также степень окисления переходного металла. Уиттингем показал принципиальную возможность, но характеристики были невысокими, сопоставимыми со свинец-кислотными аккумуляторами. Индустрии не было смысла идти по новому пути.

А Джон Гуденаф в 80-е показал, что в качестве материала для стока лития можно использовать сложный оксид LiCoO2. Его фундаментальная работа так и называется “LiCoO2 как катодный материал для литий-ионных аккумуляторов с высокой удельной энергией”; она во многом и задала направление работ. Но без пары, без анодного материала, способного обеспечивать устойчивую работу катода, аккумулятор не появился бы. Японский коллега предложил углеродный материал, в который можно обратимо внедрять и извлекать литий.

Первый показал принципиальную возможность, второй выявил пригодность соединения LiCoO2 для этих целей, а третий нашел “супружескую пару”, которая как раз и появилась в коммерческом продукте компании “Сони” в 1991 году. Такие аккумуляторы во многом поменяли нашу жизнь».

Разные разности
Кофе и мы
Когда лучше пить кофе? Утром? Днем? Вечером? Казалось бы, бессмысленный вопрос — когда хочу, тогда и пью. И тем не менее он стал предметом исследования ученых.
Кофе и муравьи
Мы как будто и так знаем, что чашка кофе стимулирует умственные способности. Однако это субъективный опыт, и хорошо бы подтвердить его в независимых и однозначных экспериментах. Для этого ученые исследовали влияние кофеина на память в экспериментах н...
Кофе и пчелы
Если вы думаете, что только люди любят кофе, то глубоко заблуждаетесь. Кофеин очень любят пчелы. Из предлагаемых напитков пчелы выберут тот, в котором есть кофеин. Похоже, об этом знают растения и используют эту пчелиную слабость в своих интересах.
Пишут, что…
…бабочки в полете постоянно изменяют угол наклона своего тела, чтобы как можно дольше парить между редкими взмахами крыльев, отчего направление их движения становится непредсказуемым… …если заглушить группу нейронов в гипоталамусе, то можно избавит...