Весной 2018 года ESS (European Spallation Source — Европейский импульсный источник) организовал экскурсию для группы научных журналистов, среди которых оказался и наш корреспондент Д.А. Васильев. ESS — многопрофильный исследовательский центр на юге Швеции, возле старинного университетского городка Лунда. Там строится объект, который со временем станет самым длинным линейным протонным ускорителем с самым ярким нейтронным источником. Он будет готов к 2023 году, однако даже сейчас о только строящемся объекте есть что рассказать.
|
Будущий комплекс. От кольца ускорителя MAX IV его отделяет несколько зданий. Изображение: ESS |
Есть в Асгарде место Хлидскьяльв. Когда Один восседал там на престоле, видел он все миры и все дела людские, и была ему ведома суть всего видимого.
Младшая Эдда. Видения Гюльви
Место для нейтронов
Исследования с применением нейтронов начались с послевоенных экспериментов Клиффорда Шалла и Эрнеста Уоллена в Окриджской национальной лаборатории США и их канадского коллеги Бертрама Брокхауса из Ядерной лаборатории в Чок-Ривер. Эти исследования позволили впервые получить снимки молекулярных структур вещества, а Шалл и Брокхаус удостоились Нобелевской премии 1994 года «за создание нейтронной спектроскопии». Уоллен не дожил до заслуженного признания.
|
Система охлаждения источника |
Свои опыты Шалл и Уоллен ставили на нейтронах, которые получались как побочный продукт ядерной реакции в окриджском атомном реакторе. А первый крупный источник, сделанный специально для нейтронной спектроскопии, построили в гренобльском Институте Лауэ и Ланжевена в 1971 году. Однако со временем нейтронные источники на ядерных реакторах приблизились к пределу своих возможностей, и на смену им пришла новая технология — импульсных источников. Главным в ней является ускоритель протонов. Разогнанные в нем сгустки частиц бомбардируют мишень из какого-либо тяжелого металла. Влетающая в ядро высокоэнергичная частица взаимодействует с его отдельными нуклонами и выбивает их из ядра. Остаток находится в состоянии сильного возбуждения, которое снимется за счет испускания гамма-квантов, протонов, нейтронов и более сложных частиц. При этом заряженные частицы быстро теряют энергию на ионизацию материала мишени, а протоны оказываются основной вылетающей из нее компонентой. Их собирают, формируют пучок и отправляют в исследовательский прибор. Первый такой источник построили в Аргонской национальной лаборатории Минэнерго США в 1981 году, а закрыли в 2008-м. Импульсные источники отличаются от реакторных стабильностью работы, безопасностью, высокой яркостью и возможностью создания направленного пучка.
Европейская ассоциация пользователей нейтронных источников (European Neutron Scattering Association, ENSA) высказывалась за строительство самого мощного источника еще с 1993 года, однако этот проект получил зеленый свет лишь в 2011-м, когда 17 стран подписали меморандум о взаимопонимании и определили место постройки будущего комплекса в Швеции с центром обработки и хранения данных в Дании, в Копенгагенском университете. Изначально на роль дома для ESS претендовали еще два города: испанский Бильбао и Дебрецен в Венгрии, но в итоге выбор пал на городок Лунд на юге Швеции. Его выгодно отличали несколько параметров. Во-первых, это старинный студенческий городок; в Лундском университете сегодня находится часть лабораторий, которые позднее переедут в строящиеся для них здания на территории ESS. Во-вторых, он расположен вблизи уже действующего комплекса MAX 4 — мощнейшего источника синхротронного излучения. Это позволит проводить комплексные материаловедческие исследования с применением обоих источников. В-третьих, транспортная доступность: город находится вблизи международного аэропорта Копенгагена и добраться до него можно на поезде за 40 минут. От железнодорожной станции до самого комплекса будет курсировать трамвай, линия которого сейчас строится. Строительство же самого ESS началось в 2014 году.
Нейтроны в физике, химии, биологии
|
Испытательный макет детектора нейтронов |
Чем хороши нейтроны для разного рода исследований? Будучи нейтральными частицами, они, двигаясь в твердом веществе, как взаимодействуют непосредственно с ядрами атомов, так и проникают в межатомные пространства. Поэтому по рассеянию нейтронов можно судить о пространственном расположении атомов и об изотопном строении вещества. Кроме того, из-за наличия собственного магнитного момента они дают информацию о внутреннем магнитном порядке.
Нейтроны глубоко проникают в вещество, поэтому в камеру для исследований можно поставить небольшую экспериментальную установку и следить за протекающими в ней процессами — динамикой химических превращений, движением биологических объектов, изменением структуры твердых тел. Нейтроны отлично подходят для зондирования: с их помощью можно исследовать атомные структуры и силы различных объектов — начиная от огромной детали и заканчивая медицинскими препаратами или белками. При этом чем ярче источник, тем более высокого разрешения снимка можно добиться. Как раз для обеспечения максимально яркого пучка нейтронов и строится ESS. Сами создатели, сравнивая свое детище с ныне существующими источниками, характеризуют его так: «Разница такая, как если делать фотографии при свече или с мощной вспышкой».
Сам комплекс не будет инициатором научных исследований, его задача — обеспечить доступ исследователям к нейтронному источнику, его приборам и обработать полученные данные. Для проведения эксперимента в ESS нужно будет подать заявку в комиссию, которая решит, кому и в какой очередности предоставить доступ к оборудованию. Приоритет получат, разумеется, страны — основатели проекта. Такой подход также обеспечит недоступность для военных исследований — идея ESS заключается в исключительно мирном использовании, в отличие от того же Окриджа. Заявки можно подавать уже на 2019 год, правда, в это время на ускорителе еще будет производиться отладка оборудования, так что потенциальным исследователям придется мириться с перебоями и остановками в работе источника. Полноценная работа запланирована после 2023 года.
|
Ионный источник — первое оборудование, поставленное по схеме «натурального» вклада в проект итальянским Национальны институтом ядерной физики. Его лаборатория в Катаньи делает такое оборудование уже более тридцати лет. |
Особый интерес представляет модель обеспечения проекта. Большую часть финансирования (планировали 1,864 млрд. евро, сейчас сумма уже превысила 1,9 млрд.) взяли на себя принимающие государства — Швеция и Дания, остальные же страны-участницы обеспечивают комплекс оборудованием и предоставляют обслуживающий персонал, который будет насчитывать без малого шесть тысяч человек. Так, на момент проведения экскурсии итальянская сторона поставила ионный источник (на фото совсем новый, даже еще в упаковочной пленке).
Скандинавский социализм проявляется не только в свободном доступе к источнику для гражданских исследователей, но и в обработке данных. Все результаты исследований становятся открытыми через три года — этот срок считается достаточным для того, чтобы ученые опубликовала статьи о своей работе или написали диссертацию на ее основе. При такой схеме мощности комплекса предоставляют бесплатно, но тому, кто захочет, чтобы данные сразу попали в открытый доступ, придется заплатить за использование ресурсов ESS. Как заявляет руководство комплекса, такой подход может обеспечить не более 10% финансирования. Кстати, основатели проекта собираются пойти еще дальше: в перспективе создать единую общеевропейскую базу по нейтронным исследованиям, где будут собраны результаты всех экспериментов по этой теме.
Работа источника и приборов
|
Тоннель ускорителя протяженностью 600 метров |
Сердце комплекса — нейтронный источник, он состоит из протонного ускорителя длиной 600 метров и мощностью 2 ГэВ и вольфрамовой (вместо традиционной для таких источников ртутной) мишени, в результате бомбардировки которой и образуются нейтронные пучки. Вокруг мишени расположены резервуары с водой и с жидким водородом, служащие замедлителями потока, и 15 приборов и инструментов — со временем их станет 22.
Для получения протонов в ускорителе используют ионный источник, где газообразный водород нагревают электромагнитным полем до состояния плазмы. Отделенные от электронов протоны попадают сначала в радиочастотный квадруполь, там они группируются в сгусток и получают энергию в 3,6 МэВ. Далее поперечные и продольные характеристики сгустка анализируются и корректируются в транспортировщике пучков средней энергии. Оттуда пучок направляется в дрейфовые трубки линейного ускорителя. На этом этапе важно скорректировать пучок протонов и придать ему достаточное ускорение. Пролетев по трубкам 50 метров, протоны попадают в сверхпроводящие камеры, которые охлаждаются жидким гелием до -271°C. Далее пучок ускоряется через линейные ускорители — Medium Beta Linac (MBL), High Beta Linac (HBL) — до 96% скорости света и попадает в мишень через транспортировщик пучков высокой энергии.
Сама мишень представляет собой вращающийся диск из стального каркаса диаметром 2,6 м и весом в 11 тонн с вольфрамовыми блоками. Ее охлаждают газообразным гелием, имеется также система резервного водяного охлаждения. Выбор именно в пользу вольфрама в качестве мишени был сделан как из-за прочности материала, так и в силу того, что при бомбардировке вольфрама получается большое количество нейтронов. Именно это решение позволило добиться небывалой яркости источника — она в сто раз выше, чем у любого из существующих нейтронных источников. Образовавшиеся нейтроны попадают в заполненный водородом или водой замедлитель с отражающим слоем из бериллия. (На первом этапе, пока ESS не вышел на полную мощность, замедление будет водяное.) Замедленные нейтроны по специальным каналам в итоге поступают в исследовательские станции, построенные вокруг мишени. Само помещение с мишенью облицовано сталью для предотвращения утечек ионизирующего излучения. Среди других мер безопасности — роботизированная система для замены изношенных материалов, например, стали вокруг вольфрамовых блоков, которая быстро разрушится.
|
Мишень с окружающими ее исследовательскими станциями Изображение: ESS |
Аппаратура — это в первую очередь различные дифрактометры, например DREAM (Diffraction Resolved by Energy & Angle Measurements) — порошковый дифрактометр, HEIMDAL — гибридный дифрактометр, MAGiC (Magnetism Single-Crystal Diffractometer) — дифрактометр для исследований по прикладной и теоретической физике, NMX — макромолекулярный дифрактометр, BEER — инженерный дифрактометр. Среди других приборов — рефлектометры ESTIA и FREIA, ODIN — многоцелевой «бог» для получения изображений, для малоуглового нейтронного рассеяния будут построены LoKI и SKADI. Также в распоряжении исследователей будут целых пять спектрометров: BIFROST, CSPEC, MIRACLES, T-REX и VESPA. Нетрудно заметить, что многие приборы получили названия в честь богов скандинавского пантеона, — наверное, это дань уважения принимающей стороне.
Нейтроны в действии
|
Яйца динозавра
Фото: Wenzel Schürmann / TUM)
|
Исследователи Боннского университета Томас Энглер и Ян Цзу-Жуэй решили воспользоваться нейтронной томографией в мюнхенском Исследовательском центре им. Хайнца Майера-Лейбница для изучения ценнейшей палеонтологической находки — яиц динозавров, обнаруженных в Китае в 2006 году. Ее уникальность заключается в том, что в одном гнезде были найдены сразу три яйца, с зародышами на различных стадиях развития. Это выяснили с помощью рентгена, однако он не дал возможности рассмотреть детали. В Германию яйца доставили для того, чтобы с помощью нейтронов под руководством доктора Малгожаты Маковской увидеть, что у них внутри, и построить трехмерные изображения содержимого.
Другим примером применения нейтронов для изучения древностей может служить работа Маковской на той же установке по исследованию черепа штекелерии — слегка похожего на носорога животного, жившего 230 млн назад, в триасовом периоде. Считается, что такие животные воспринимали звук с помощью небольшой косточки на нижней челюсти, но у исследуемого объекта, напротив, подобная косточка очень массивна. Что это — атавизм или она была частью слухового органа? С помощью нейтронной томографии построили компьютерную трехмерную модель черепа, достаточно детальную, чтобы найти биологи смогли поискать ответ на вопрос.
Источник FRM II принадлежит к числу реакторных источников. Работает он так. Из атомного реактора выводится пучок нейтронов. Они бьют по урановой мишени, вызывая реакцию деления и порождая существенное количество новых нейтронов, которые и служат рабочим инструментом исследователя.
|
Нейтронная реконструкция черепа штекелерии и сам череп (справа)
Фото: Malgorzata Makowska, Michael Laaß, Ingmar Werneburg
|
|
Вирус гепатита С прикрепляется к клетке
Изображение: Synthelis / Illuscienci
|
Исследователи компании «Synthelis SAS», Гренобльского университета и Института Лауэ и Ланжевена впервые изучили работу мембранного белка p7 вируса гепатита С в естественной среде и в реальном времени. Этот белок играет ключевую роль в механизме заражения вирусом, но до тех пор оставался малоизученным. С помощью нейтронного рефлектометра FIGARO в Институте Лауэ и Ланжевена, где установлен мощный нейтронный источник, удалось с разрешением в нанометры увидеть структуру белка p7 после его закрепления на липидном бислое, который изображал мембрану клетки. По словам управляющего директора «Synthelis» Бруно Тиллиера: «Нейтроны оказались главными в этом проекте, так как нам нужно было изучить структуру белка p7 в его естественной среде. Теперь мы можем использовать этот метод для изучения других мембранных белков в липидном бислое». Не исключено, что новое исследование поспособствует развитию вакцины от вируса.
|
Нейтронные снимки отлично совпадают с расчетными изображениями
Фото: Argonne National Laboratory
|
Аргонская национальная лаборатория Минэнерго США воспользовалась нейтронами для исследования коррелированных электронных структур в металлах. Обычно электроны в металле не связаны друг с другом, однако есть некоторые вещества, где связи между ними слишком сильны, чтобы можно было их игнорировать, — в этих веществах возникают коррелированные электронные системы. Их стабильность зависит от температуры. Одно из интересных теоретических предсказаний — при высоких температурах в таких системах возникают флуктуации, которые существенно снижают подвижность электронов. Материаловеды изучают подобные электронные структуры уже более полувека, но только благодаря нейтронным источникам удалось соотнести реальное поведение электронов с теми картинками, что дают математические модели. По словам руководителя группы Рэя Озборна: «Нейтронное рассеивание — единственный метод исследования, который чувствителен ко всему спектру электронных флуктуаций». Благодаря этому методу удалось непосредственно увидеть электронные флуктуации и, что самое главное, получить неплохое совпадение с расчетными данными.
Эта статья доступна в печатном номере "Химии и жизни" (№ 9/2018) на с. 2 — 5.