Гидразин космический

Греков А.П., Веселов В.Я.
(«ХиЖ», 1979, №7)
Вещество с очень простой формулой и очень непростой историей, в которой были и взлеты (в прямом смысле этого слова), и падения (к счастью, в основном в переносном). Это гидразин — H2N—NH2.

История с предысторией


В том, что гидразин был открыт в самом конце XIX века, сомневаться не приходится. Однако, отыскав статью об этом веществе в Краткой химической энциклопедии, вы так и не узнаете, кто же его открыл. А в специальной литературе фигурируют имена как минимум двух первооткрывателей. Обратимся к источникам авторитетным и доступным.

В менделеевских «Основах химии», равно как и в «Истории химии» Микеле Джуа, первооткрывателем гидразина назван Теодор Курциус (1857—1928) — известный в свое время химик, профессор в Киле и Гейдельберге, первым получивший еще несколько веществ, главным образом азотсодержащих.

Однако во французских книгах по истории химии утверждается, что чистый безводный гидразин был получен лишь через семь лет после опытов Курциуса, в 1894 году, французским химиком Лобре де Брином. Курциус же получил лишь сульфат гидразина — соль состава N2H4-H2SO4.

Как бы там ни было, справедливости ради нужно отметить, что открытию неорганического вещества гидразина предшествовали работы трех очень известных химиков-органиков. Еще в 1845 году Николай Николаевич Зинин, тогда еще молодой профессор Казанского университета, восстановив азобензол сернистым натрием, получил бесцветные пластинки гидразобензола — первого вещества, содержащего группу — NH — NH—. (Формула этого соединения C6H5NHNHC6H5, его можно считать первым известным нам производным гидразина.) Через тридцать лет немецкие химики Эмиль и Отто Фишеры (первый стал Нобелевским лауреатом) выделили фенилгидразин C6H5NHNH2. По сути дела, они смогли заменить атомом водорода одну из фенильных групп молекулы гидразобензола. Когда то же самое удалось сделать и со второй фенильной группой, гидразин предстал перед химиками в относительно чистом виде...


Как он есть


Не слишком привлекательно выглядело новое вещество. Бесцветная довольно вязкая жидкость, дымящаяся на воздухе, с запахом нашатырного спирта, не очень стойкая к окислителям (склонная к самовоспламенению) и гигроскопичная. Но были у гидразина свойства, заинтересовавшие химиков. Например, он оказался восстановителем, причем очень активным. Окислы многих металлов — железа, хрома, меди — при контакте с ним восстанавливались столь бурно, что избыток гидразина воспламенялся и горел синим (точнее все-таки фиолетовым) пламенем.

Позже выяснили, что под действием этих окислов происходит каталитическое разложение гидразина на газообразные азот и аммиак. Таким образом, он оказался пригоден в качестве ракетного топлива. Но с этой точки зрения гидразином заинтересовались спустя много лет. Пока же его изучали как достаточно своеобразный химический феномен.

Отметили, в частности, что в полярных жидкостях (вода, амины, спирты) гидразин растворяется очень хорошо, в неполярных же, и прежде всего в углеводородах, он растворяться не желает. Раствор гидразина в воде, как выяснилось, имеет состав N2H4-H2O, причем по физическим свойствам больше походит на воду безводный гидразин, нежели «водный». Сравним плотности, температуры замерзания и кипения этих трех веществ:

вода — 1,00 г/см3, 0° и 100°С,

гидразин — 1,01 г'см3, 2°С и 11 3,5°С,

гидразингидрат — 1,03 г/см3, —51,7°С и 119,5°С.

Обратим внимание на значительно более низкую температуру замерзания гидразингидрата. Именно это обстоятельство позволило использовать в качестве ракетного топлива гидразингидрат в тех случаях, когда сам гидразин замерзает.

Тепла при горении гидразина выделяется сравнительно мало—намного меньше, чем при горении углеводородов. Гидразингидрат в этом смысле еще хуже. Но оба они хорошо горят при малых затратах окислителя (последним могут быть воздух и кислород, перекись водорода, азотная кислота и фтор; кроме того, как мы уже знаем, гидразин может создавать реактивную тягу и без помощи реакции окисления, разлагаясь на катализаторах). Это обстоятельство, а также большое количество образующихся при горении газов сделали гидразин и его производные незаменимыми веществами ракетных полигонов.


Макро и микро


Двигателем второй ступени ракет «Космос», посредством которых в 1962— 1967 гг. на космические орбиты выведено около 200 искусственных спутников Земли, был жидкостной реактивный двигатель РД-119. Горючим для него служило вещество, обозначаемое в справочниках четырьмя буквами: НДМГ. Расшифровываются они так: несимметричный диметилгидразин. Еще одно важное для ракетной техники производное гидразина! Его формула: (CH3)2NNH2.

В отличие от безводного гидразина и гидразингидрата это вещество легко, в любых соотношениях, смешивается не только с водой, но и с нефтепродуктами. НДМГ входит в состав многих жидких ракетных топлив. Известное американское горючее для ЖРД «Аэрозин-50» это смесь гидразина и НДМГ.

НДМГ от гидразина отличается не сильно: то же агрегатное состояние, близкие химические и физические свойства, тот же малоприятный запах.

Одна существенная частность. Несимметричный диметилгидразин — хороший растворитель. Поэтому в нем набухают, утрачивая прочность и плотность, большинство известных прокладочных материалов. Исключение составляют лишь некоторые специальные резины, полиэтилен и, конечно, «пластмассовая платина» — фторопласт-4.

Пределы взрывоопасных концентраций для смесей НДМГ с воздухом чрезвычайно широки: от 2 до 99% НДМГ по объему. Уже поэтому лучше не допускать его контакта с воздухом. Но есть и другие причины. Во-первых, он окисляется кислородом; во-вторых, взаимодействует с двуокисью углерода, содержащейся в воздухе (при этом образуются твердые соли); в-третьих, как и гидразин, НДМГ поглощает из воздуха влагу. Все три процесса приводят к порче достаточно дорогого НДМГ. Потому эту непростую жидкость рекомендуют хранить под азотной «подушкой».

Выше рассказано о наиболее известных примерах использования гидразина и его производных в ракетной технике. Однако это был, если хотите, итог, высшая точка взлета. А предшествовали ей события менее знаменательные, не претендующие на долгую и благодарную память. Однако умолчать о них было бы неверно.

Многим читателям «Химии и жизни», очевидно, знакомо имя немецкого инженера и изобретателя Хельмута Вальтера. До начала второй мировой войны он был техническим руководителем небольшой приборостроительной фирмы, а к концу войны стал одним из самых почитаемых (и глубоко засекреченных) деятелей науки и техники в фашистской Германии. Как и Вернер фон Браун, он разрабатывал «оружие возмездия», на которое так рассчитывали гитлеровцы и которое им почти ничего не дало.

Вся карьера Вальтера связана с концентрированными растворами перекиси водорода. Их он использовал и в двигателях для подводной лодки новой конструкции (о чем рассказано в статье «Совершенно секретно: вода плюс атом кислорода» — «Химия и жизнь», 1972, № 1), и в реактивном двигателе собственной конструкции. Восьмидесяти процентная перекись водорода работала в этом двигателе как окислитель, горючим же для него служила смесь почти равных количеств метилового спирта и гидразингидрата. Гидразингидрат в составе топлива обеспечивал его легкое и безотказное самовоспламенение.

Двигатели Вальтера устанавливали на истребителях Мессершмитта «Ме-1 63» и на пилотируемом самолете-снаряде «Наттер». Последний предназначался для борьбы с бомбардировочной авиацией. Примитивная деревянная конструкция самолета несла мощный заряд из 24 твердотопливных реактивных снарядов. После залпа летчик и дорогостоящий двигатель спасались на парашютах, а «Наттер» самоуничтожался в воздухе.

Дальше испытаний (сентябрь 1944 г.) затея с «Наттером» не пошла. Она не повлияла на исход войны, как, впрочем, и другие начинания Хельмута Вальтера. Однако работы по использованию гидразина и его производных в качестве реактивного топлива были продолжены в разных странах. В частности, в США вскоре после войны построены ракеты «Бомарк», «Авангард», «Тор-Эйбл», «Найк-Аякс», работающие на смеси, несимметричного диметилгидразина и керосина. Позже НДМГ вошел в состав топлива двигателей второй ступени ракет «Тор-Дельта», «Торад-Дельта», «Тор-Аджена», «Торад-Аджена». Он же входил в состав горючего первой и второй ступеней мощных ракет-носителей «Титан-М», «Титан-Ill». А в реактивном двигателе французского истребителя- бомбардировщика «Мираж-111» НДМГ используют как активизирующую добавку к традиционному топливу.


s19790731 hidrazin1.jpg
Для получения гидразина в промышленных масштабах сейчас используют в основном два способа — окисление мочевины гипохлоритом натрия в щелочной среде и процесс взаимодействия аммиака с хлором в водном растворе каустической соды, разработанный еще в 1907 году известным химиком Фридрихом Рашигом. Схема этого процесса и показана на рисунке. Слегка видоизмененным этот же способ используют и для получения важнейшего из производных гидразина — несимметричного диметилгидразина


Есть сведения, что гидразин и его производные будут работать и при полетах «космического челнока» — транспортного космического корабля многократного действия «Спейс шаттл», проект которого разработан в США.

Современной космической технике нужны не только гигантские двигатели ракет первой и второй ступени. В последнее время все больше внимания уделяют разработке микрореактивных двигателей, с помощью которых корабли и спутники перемещаются в открытом космосе в условиях невесомости — меняют орбиты, маневрируют. В этих микродвигателях гидразину тоже отводят важную роль.

В условиях орбитального полета одним из самых главных требований к ракетному топливу становятся простота и надежность его воспламенения (или начала реакции самопроизвольного разложения с выделением газообразных продуктов). С этой точки зрения гидразин и его производные не имеют равных. Они воспламеняются очень легко, а разложение гидразина на азот и аммиак возможно как под действием нагрева, так и под влиянием катализаторов. В итоге микродвигатели с гидразином и его производными изготавливают в нескольких странах. Известно, например, что гидразиновые микродвигатели будут работать уже в начале 80-х годов в системах ориентации и коррекции орбиты нового европейского спутника связи «ECS». Сообщалось также, что бре- менская фирма «Эрно» выпустила двадцать гидразиновых микродвигателей с тягой от 0,5 до 2,0 Н (50—200 гс) для спутника «OTS», запущенного Европейским космическим агентством в прошлом году.

Но не только в космосе, не только для космической техники нужен нам гидразин. Сегодня химии гидразина посвящено много исследований и книг. Производных его получены сотни тысяч, и некоторые из них оказались практически значимыми.

В терапевтической практике используют многие биологически активные вещества — производные гидразина. Известна, в частности, группа лекарств от туберкулеза, в которых действующим началом стал гидразид изоникотиновой кислоты — производное гидразина. Другие его производные используют как средство против нервных депрессий.

А гидразид малеиновой кислоты — стимулятор роста картофеля, сахарной свеклы, винограда, табака.

Конечно, далеко не все производные гидразина применимы для подобных целей. Давно известно, что и сам гидразин, и его простейшие производные, применяемые в ракетной технике, токсичны. Сообщения о токсичности многих производных гидразина, появившиеся в медицинской литературе в последние годы, заставляют относиться к этим веществам с еще большей настороженностью и вниманием. Однако от их вредностей научились защищаться достаточно надежно.


s19790731 hidrazin2.jpg

Схема гидразин-воздушиого (или гидразин-кислородного) топливного элемента


Разработаны и кое-где уже используются на практике высокоэффективные и надежные гидразин-воздушные и гидразин-кислородные топливные элементы — химические источники тока. Они работали, в частности, вместо аккумуляторов на борту канадской одноместной научно-исследовательской подводной лодки «Стар».

При работе в топливном элементе из сравнительно ядовитого гидразина (или гидразингидрата) образуются лишь совершенно безвредные вода и азот. Электрическая энергия вырабатывается благодаря протекающей на аноде реакции:

s19790731 hidrazin3.jpg

Экологическая безвредность — главное достоинство таких источников тока.

Гидразин-воздушные топливные элементы прошли успешные испытания на микромотоцикле и грузовом электромобиле, развивавшем скорость больше 70 километров в час.

Одним словом, гидразину нашлось дело и в космосе, и под водой, и на земле.


123

Разные разности

07.07.2020 18:00:00

…проект ИТЭР по созданию крупнейшего в мире термоядерного реактора прошел важную веху — на место установлено основание криостата, самая большая и тяжелая часть токамака...

…созданы структуры для фотосинтеза, более эффективного, чем природный, — капли размером с клетку, содержащие мембраны хлоропластов шпината и компоненты ферментативного цикла для синтеза органических молекул из углекислого газа…

…каждая третья женщина европейского происхождения имеет «неандертальский» вариант рецептора гормона прогестерона, связанный с повышенной рождаемостью, более редким кровотечением на ранних сроках беременности и меньшим количеством выкидышей…


>>
20.05.2020 18:30:00

Вакцины – какие, сколько и на какой стадии?

Даже когда острая фаза пандемии COVID-19 закончится и меры карантина больше не будут нужны, сам вирус никуда не денется, а продолжит жить среди нас. Самый эффективный способ от него защититься – сделать вакцину.

>>
18.05.2020 19:00:00

Коронавирусы: в семье не без урода

Найдены молекулярные отличия более патогенных коронавирусов от менее патогенных. Пока не вполне ясно, как эти отличия работают. Но возможно ученые смогут понять, почему настолько похожие инфекционные агенты приводят к таким разным последствиям для человека.

>>
13.05.2020 17:00:00

…из-за снижения транспортных потоков во время пандемии коронавируса уменьшились сейсмические шумы в коре Земли; специалисты считают, что это облегчит мониторинг слабых землетрясений, вулканической активности и других сейсмических событий...

…6 марта с мыса Канаверал стартовала миссия Space X CRS-20, которая доставит на МКС 250 пробирок со стволовыми клетками человека; на протяжении месяца они будут развиваться в кости, хрящи и другие ткани в условиях невесомости...

…по мере того как на рынок выходят художественные произведения, разработанные с помощью генеративных алгоритмов и когнитивной робототехники, встает вопрос об авторском праве на них…

>>
05.05.2020 17:00:00

Смартфон может незаметно передавать секретные сведения посторонним через неучтенную разработчиками прореху на границе между столом и смартфоном. Как же это может быть? Ответ в ходе серии экспериментов получили исследователи из Вашингтонского университета.

>>