Нобелевский аккумулятор

С.М. Комаров
(«ХиЖ», 2019, №11)

pic_2019_11_14.jpgПремию по химии за 2019 год Нобелевский комитет присудил американцу Джону Гуденафу (Оксфордский университет, Великобритания), англичанину Стэнли Уиттингему (Университет штата Нью-Йорк в Бингемтоне, компания «Эксон», США) и японцу Ёсино Акире (Нагойский университет Мэйдзё, корпорации «Асахи Касеи», Япония). А создали они своими совместными усилиями одно из чудес двадцатого века — литий-ионный аккумулятор. Тот самый, что обеспечил информационную революцию первого десятилетия века двадцать первого.

Все мобильные средства связи получили такое распространение именно благодаря стремительному прогрессу источников энергии, ведь еще в середине девяностых мобильный телефон был редкостью и представлял собой увесистый чемоданчик, который нужно было носить в руке, но никак не в кармане или дамской сумочке. Аккумуляторную революцию начала компания «Сони», и относительно недавно, в начале 90-х, она стала использовать литий-ионные аккумуляторы в своей переносной электронике. В общем, если бы не работы лауреатов 2019 года, не было бы у нас всего того разнообразия мобильных устройств, а связь осуществлялась преимущественно через стационарные компьютеры и телефоны. Что же сделал каждый из этих исследователей? Вот как на этот вопрос отвечает член-корреспондент РАН Е.В.Антипов, заведующий кафедрой электрохимии химического факультета МГУ имени М.В.Ломоносова, который и сам сотрудничал с нынешними нобелевскими лауреатами:

«Стэнли Уиттингем в 70-х годах XX века показал возможность обратимого внедрения-извлечения лития в слоистых сульфидных материалах переходных металлов. В отличие от кислотных аккумуляторов, где вещества преобразуются, растворяются, эти сульфидные материалы работают без изменения кристаллической решетки. В них изменяется концентрация ионов лития и, соответственно, количество электронов в зоне проводимости, а также степень окисления переходного металла. Уиттингем показал принципиальную возможность, но характеристики были невысокими, сопоставимыми со свинец-кислотными аккумуляторами. Индустрии не было смысла идти по новому пути.

А Джон Гуденаф в 80-е показал, что в качестве материала для стока лития можно использовать сложный оксид LiCoO2. Его фундаментальная работа так и называется “LiCoO2 как катодный материал для литий-ионных аккумуляторов с высокой удельной энергией”; она во многом и задала направление работ. Но без пары, без анодного материала, способного обеспечивать устойчивую работу катода, аккумулятор не появился бы. Японский коллега предложил углеродный материал, в который можно обратимо внедрять и извлекать литий.

Первый показал принципиальную возможность, второй выявил пригодность соединения LiCoO2 для этих целей, а третий нашел “супружескую пару”, которая как раз и появилась в коммерческом продукте компании “Сони” в 1991 году. Такие аккумуляторы во многом поменяли нашу жизнь».

Разные разности
Солнечные батареи отбрасывают тень
Исследователи из Корнельского университета детально исследовали, как изменяется жизнь водоема, на поверхности которого лежат солнечные панели.
Песни китов похожи на человеческую речь
Какой язык более эффективен? Тот, в котором слова короче. Во-первых, на их произношение человек тратит меньше энергии и меньше времени. А во-вторых, короткие слова легче воспринимать. Как выяснилось, и горбатым китам не чужда эта премудрость.
Ивановские нанотехнологии работают!
Химики всегда занимались нанотехнологиями, потому что постоянно манипулировали молекулами и атомами, молекулярными кластерами и комплексами (а это все нанообъекты). Всегда занимались нанотехнологиями и в Ивановском химико-технологическом университете...
Умные российские стекла
Под американские санкции неожиданно попала никому не известная в России маленькая наукоемкая компания «Октогласс». Ее основали в 2017 году молодые специалисты и предприниматели, выпускники МИФИ, СамГТУ и МИРЭА. Чем же наши молодые разр...