И.В. Петрянов-Соколов

В этом году мы хотим рассказать вам, уважаемые читатели, о воде. Этот цикл статей так и будет называться: цикл воды. Наверное, нет смысла говорить о том, сколь важно это вещество для всех естественных наук и для каждого из нас. Не случайно многие пытаются спекулировать на интересе к воде, взять хотя бы нашумевший фильм «Великая тайна воды», которые привлек внимание миллионов людей. С другой стороны, нельзя упрощать ситуацию и говорить, что мы знаем о воде все; это совсем не так, вода была и остается самым необычным веществом в мире. Чтобы в деталях рассмотреть особенности воды, нужен обстоятельный разговор. А начинаем мы его главами из замечательной книги основателя нашего журнала академика И.В.Петрянова-Соколова, которая вышла в издательстве «Педагогика» в 1975 году. Эта книжка, кстати, вполне может служить образцом научно-популярного разговора крупного ученого с таким непростым читателем, как ученик средней школы.



pic_2007_01_26.jpg



Все ли уже известно о воде?


Совсем еще недавно, в 30-х годах нашего века, химики были уверены, что
состав воды им хорошо известен. Но однажды одному из них пришлось измерить плотность остатка воды после электролиза. Он был удивлен: плотность оказалась на несколько стотысячных долей выше нормальной. В науке нет ничего незначительного. Эта ничтожная разница потребовала объяснения. В результате ученые открыли много новых больших тайн природы. Они узнали, что вода очень сложна. Были найдены новые изотопные формы воды. Добыта из обычной тяжелая вода; оказалось, что она совершенно необходима для энергетики будущего: при термоядерной реакции дейтерий, выделенный из литра воды, даст столько же энергии, как 120 кг. угля. Теперь во всех странах мира физики упорно и неустанно работают над решением этой великой задачи. А началось все с простого измерения самой обычной, будничной и неинтересной величины — плотность воды была измерена точнее на лишний десятичный знак. Каждое новое, более точное измерение, каждый новый верный расчет, каждое новое наблюдение не только повышает уверенность в знании и надежности уже добытого и известного, но и раздвигает границы неведомого и еще не познанного и прокладывает к ним новые пути. Когда зимой замерзает вода в озере, никто из тех, кто катается на коньках, и не подозревает, что изотопный состав льда изменился: в нем уменьшилось содержание тяжелого водорода, но повысилось количество тяжелого кислорода. Вода из тающего льда другая и отличается от воды, из которой лед был получен.



Что такое легкая вода?


Это та самая вода, формулу которой знают все школьники — Н216О. Но такой воды в природе нет. Такую воду с огромным трудом приготовили ученые. Она им понадобилась для точного измерения свойств воды, и в первую очередь для измерения ее плотности. Пока такая вода существует только в нескольких крупнейших лабораториях мира, где изучают свойства различных изотопных соединений. И этой воды в природе нет. Строго говоря, нужно было бы называть тяжелой воду, состоящую только из одних тяжелых изотопов водорода и кислорода, D218О, но такой воды нет даже и в лабораториях ученых. Конечно, если эта вода понадобится науке или технике, ученые сумеют найти способ, как ее получить: и дейтерия, и тяжелого кислорода в природной воде сколько угодно.

В науке и ядерной технике принято условно называть тяжелой водой тяжеловодородную воду. Она содержит только дейтерий, в ней совсем нет обычного, легкого изотопа водорода. Изотопный состав по кислороду в этой воде соответствует обычно составу кислорода воздуха.

Еще совсем недавно никто в мире и не подозревал, что такая вода существует, а теперь во многих странах мира работают гигантские заводы, перерабатывающие миллионы тонн воды, чтобы извлечь из нее дейтерий и получить чистую тяжелую воду.



Много ли различных вод содержится в воде?


В какой воде? В той, что льется из водопроводного крана, куда она пришла из реки, тяжелой воды D216О около 150 г. на тонну, а тяжелокислородной (Н217О и Н218О вместе) почти 1800 г. на тонну воды. А в воде из Тихого океана тяжелой воды почти 165 г. на тонну.

В тонне льда одного из больших ледников Кавказа тяжелой воды на 7 г. больше, чем в речной воде, а тяжелокислородной воды столько же. Но зато в воде ручейков, бегущих по этому леднику, D216О оказалось меньше на 7 г., а Н218О — на 23 г. больше, чем в речной. Тритиевая вода T216О выпадает на землю вместе с осадками, но ее очень мало — всего лишь 1 г. на миллион миллионов тонн дождевой воды. В океанской воде ее еще меньше.

Строго говоря, вода всегда и всюду разная. Даже в снеге, выпадающем в
разные дни, разный изотопный состав. Конечно, отличие невелико, всего 1—2 г. на тонну. Только, пожалуй, очень трудно сказать — мало это или много.



В чем же различие между легкой природной и тяжелой водой?


Ответ на этот вопрос будет зависеть от того, кому он задан. Каждый из нас не сомневается, что с водой-то он знаком хорошо. Если каждому из нас показать три стакана с обычной, тяжелой и легкой водой, то каждый даст совершенно четкий и определенный ответ: во всех трех сосудах простая чистая вода. Она одинаково прозрачна и бесцветна. Ни на вкус, ни на запах нельзя найти между ними никакой разницы. Это все — вода.

Химик на этот вопрос ответит почти так же: между ними нет почти никакой
разницы. Все их химические свойства почти неразличимы: в каждой из этих вод натрий будет одинаково выделять водород, каждая из них при электролизе будет одинаково разлагаться, все их химические свойства будут почти совпадать. Оно и понятно: ведь химический состав у них одинаков. Это вода.

Физик не согласится. Он укажет на заметную разницу в их физических свойствах: и кипят и замерзают они при различных температурах, плотность у них разная, упругость их пара тоже немного различна. И при электролизе они разлагаются с разной скоростью. Легкая вода чуть быстрее, а тяжелая — помедленнее. Разница в скоростях ничтожна,
но остаток воды в электролизере оказывается немного обогащенным тяжелой водой. Таким путем она и была открыта. Изменения в изотопном составе мало влияют на физические свойства вещества. Те из них, которые зависят от массы молекул, меняются заметнее, например скорости диффузии молекул пара.

Биолог, пожалуй, станет в тупик и не сразу сумеет найти ответ. Ему нужно будет над вопросом о различии между водой с разным изотопным составом еще немало поработать. Совсем недавно все считали, что в тяжелой воде живые существа не могут жить. Ее даже мертвой водой называли. Но оказалось, что если очень медленно, осторожно и постепенно заменять протий в воде, где живут некоторые микроорганизмы, на дейтерий, то можно их приучить к тяжелой воде и они будут в ней неплохо жить и развиваться, а обычная вода для них станет вредной.



Сколько молекул воды в океане?


Одна. И этот ответ не совсем шутка. Конечно, каждый может, посмотрев в справочник и узнав, сколько в Мировом океане воды, легко сосчитать, сколько всего в нем содержится молекул Н2О. Но такой ответ будет не вполне верен. Вода — вещество особенное. Благодаря своеобразному строению отдельные молекулы взаимодействуют между собой. Возникает особая химическая связь вследствие того, что каждый из атомов водорода одной молекулы оттягивает к себе электроны атомов кислорода в соседних молекулах. За счет та кой водородной связи каждая молекула воды оказывается довольно прочно связанной с четырьмя соседними молекулами.



Как же все-таки построены молекулы воды в воде?


К сожалению, этот очень важный вопрос изучен еще недостаточно. Строение молекул в жидкой воде очень сложно. Когда лед плавится, его сетчатая структура частично сохраняется в образующейся воде. Молекулы в талой воде состоят из многих простых молекул — из агрегатов, сохраняющих свойства льда. При повышении температуры часть их распадается, их размеры становятся меньше.

Взаимное притяжение ведет к тому, что средний размер сложной молекулы
воды в жидкой воде значительно превышает размеры одной молекулы воды. Такое необычайное молекулярное строение воды обусловливает ее необычайные физико-химические свойства.




Какова должна быть плотность воды?


Правда, очень странный вопрос? Вспомните, как была установлена единица массы — один грамм. Это масса одного кубического сантиметра воды. Значит, не может быть никакого сомнения в том, что плотность воды должна быть только такой, какая она есть. Можно ли в этом сомневаться? Можно. Теоретики подсчитали, что если бы вода не сохраняла рыхлую, льдоподобную структуру в жидком состоянии и ее молекулы были бы
упакованы плотно, то и плотность воды была бы гораздо выше. При 25°С она была бы равна не 1,0, а 1,8 г/см3.



При какой температуре вода должна кипеть?


Этот вопрос тоже, конечно, странен. Верно, при ста градусах. Это знает каждый. Больше того, именно температура кипения воды при нормальном атмосферном давлении и выбрана в качестве одной из опорных точек температурной шкалы, условно обозначенной 100°С.

Однако вопрос поставлен иначе: при какой температуре вода должна кипеть? Ведь температуры кипения различных веществ не случайны. Они зависят от положения элементов, входящих в состав их молекул, в периодической системе Менделеева.

Если сравнивать между собой одинаковые по составу химические соединения различных элементов, принадлежащих к одной и той же группе таблицы Менделеева, то легко заметить, что чем меньше атомный
номер элемента, чем меньше его атомный вес, тем ниже температура кипения его соединений. Вода по химическому составу может быть названа гидридом кислорода. Н2Те, Н2Se и Н2S — химические аналоги воды. Если определить температуру кипения гидрида кислорода по положению его в периодической таблице, то окажется, что вода должна кипеть при —80оС. Следовательно, вода кипит приблизительно на сто восемьдесят градусов выше, чем должна кипеть. Температура кипения воды — это наиболее обычное ее свойство — оказывается необычайным и удивительным.



При какой температуре вода замерзает?


Не правда ли, вопрос не менее странен, чем предыдущие? Ну кто же не
знает, что вода замерзает при нуле градусов? Это вторая опорная точка термометра. Это самое обычное свойство воды. Но ведь и в этом случае можно спросить: при какой температуре вода должна замерзать в соответствии со своей химической природой? Оказывается, гидрид кислорода на основании его положения в таблице Менделеева должен был бы затвердевать при ста градусах ниже нуля.

Из того, что температура плавления и кипения гидрида кислорода — его аномальные свойства, следует, что в условиях нашей Земли жидкое и твердое состояния его также аномальны. Нормальным должно было бы быть только газообразное состояние воды.



Сколько существует газообразных состояний воды?


Только одно — пар. А пар тоже только один? Конечно нет, паров воды столько же, сколько существует различных вод. Водяные пары, различные по изотопному составу, обладают хотя и очень близкими, но все же различными свойствами: у них разная плотность, при одной и той же температуре они немного отличаются по упругости в насыщенном состоянии, у них чуть-чуть разные критические давления, разная скорость диффузии.



Может ли вода помнить?


Такой вопрос звучит, надо признать, очень необычно, но он вполне серьезен и очень важен. Он касается большой физико-химической проблемы, которая в своей наиболее важной части еще не исследована. Этот вопрос только поставлен в науке, но ответа на него она еще не нашла.

Вопрос в том, влияет или нет предыдущая история воды на ее физико-химические свойства и возможно ли, исследуя свойства воды, узнать, что происходило с ней ранее, — заставить саму воду «вспомнить» и рассказать нам об этом. Да, возможно, как это ни кажется удивительным. Проще всего это можно понять на простом, но очень интересном и необычайном примере — на памяти льда.

Лед — это ведь вода. Когда вода испаряется — меняется изотопный состав
воды и пара. Легкая вода испаряется хотя и в ничтожной степени, но быстрее тяжелой.

При испарении природной воды состав изменяется по изотопному содержанию не только дейтерия, но и тяжелого кислорода. Эти изменения изотопного состава пара очень хорошо изучены, и так же хорошо исследована их зависимость от температуры.

Недавно ученые поставили замечательный опыт. В Арктике, в толще огромного ледника на севере Гренландии, была заложена буровая скважина и высверлен и извлечен гигантский ледяной керн длиной почти полтора километра. На нем были отчетливо различимы годичные слои нараставшего льда. По всей длине керна эти слои были подвергнуты изотопному анализу, и по относительному содержанию тяжелых изотопов водорода и кислорода — дейтерия и 18О были определены температуры образования годичных слоев льда на каждом участке керна. Дата образования годичного слоя определялась прямым отсчетом. Таким образом была восстановлена климатическая обстановка на Земле на протяжении тысячелетия. Вода все это сумела запомнить и записать в глубинных слоях гренландского ледника.

В результате изотопных анализов слоев льда была построена учеными кривая изменения климата на Земле. Оказалось, средняя температура у нас подвержена вековым колебаниям. Было очень холодно в XV веке, в конце XVII века ив начале XIX. Самые жаркие годы были 1550 и 1930.

То, что сохранила в памяти вода, полностью совпало с записями в исторических хрониках. Обнаруженная по изотопному составу льда периодичность изменения климата позволяет предсказывать среднюю температуру в будущем на нашей планете.

Это все совершенно понятно и ясно. Хотя и очень удивительна тысячелетняя хронология погоды на Земле, записанная в толще полярного ледника, но изотопное равновесие достаточно хорошо изучено и никаких загадочных проблем в этом пока нет.



Тогда в чем же состоит загадка «памяти» воды?


Дело в том, что за последние годы в науке постепенно накопилось много
поразительных и совершенно непонятных фактов. Одни из них установлены твердо, другие требуют количественного надежного подтверждения, и все они еще ждут своего объяснения.

Например, еще никто не знает, что происходит с водой, протекающей сквозь сильное магнитное поле. Физики-теоретики совершенно уверены, что ничего с ней при этом происходить не может и не происходит, подкрепляя свою убежденность вполне достоверными теоретическими расчетами, из которых следует, что после прекращения действия магнитного поля вода должна мгновенно вернуться в прежнее состояние
и остаться такой, какой была. А опыт показывает, что она изменяется и
становится другой.

Из обычной воды в паровом котле растворенные соли, выделяясь, отлагаются плотным и твердым, как камень, слоем на стенках котельных труб, а из омагниченной воды (так ее теперь стали называть в технике) выпадают в виде рыхлого осадка, взвешенного в воде. Вроде разница невелика. Но это зависит от точки зрения. По мнению работников тепловых электростанций, эта разница исключительно важна, так как омагниченная вода обеспечивает нормальную и бесперебойную работу гигантских электростанций: не зарастают стены труб паровых котлов, выше теплопередача, больше выработка электроэнергии. На многих тепловых станциях давно установлена магнитная подготовка воды, а как и почему она работает, не знают ни инженеры, ни ученые. Кроме того, на опыте подмечено, что после магнитной обработки воды в ней ускоряются процессы кристаллизации, растворения, адсорбции, изменяется смачивание... правда, во всех случаях эффекты невелики и трудно воспроизводимы. Но каким образом в науке можно оценить, что такое мало и что много? Кто возьмется это сделать? Действие магнитного поля на воду (обязательно быстротекущую) длится малые доли секунды, а «помнит» вода об этом десятки часов. Почему — неизвестно. В этом вопросе практика далеко опередила науку. Ведь даже неизвестно, на что именно действует магнитная обработка — на воду или на содержащиеся в ней примеси. Чистой-то воды ведь не бывает.

«Память» воды не ограничивается только сохранением последствий магнитного воздействия. В науке существуют и постепенно накапливаются многие факты и наблюдения, показывающие, что вода как будто бы «помнит» и о том, что она раньше была заморожена. Талая вода, недавно получившаяся при таянии куска льда, как будто бы тоже отличается от той воды, из которой этот кусок льда образовался. В талой воде быстрее и лучше прорастают семена, быстрее развиваются ростки; даже как будто бы быстрее растут и развиваются цыплята, которые получают талую воду. Кроме удивительных свойств талой воды, установленных биологами, известны и чисто физико-химические отличия, например талая вода отличается по вязкости, по значению диэлектрической проницаемости. Вязкость талой воды принимает свое обычное для воды значение только через 3-6 суток после плавления. Почему это так (если это так), тоже никто не знает. Большинство исследователей называют эту область явлений «структурной памятью» воды, считая, что все эти странные проявления влияния предыдущей истории воды на ее свойства объясняются изменением тонкой структуры ее молекулярного состояния. Может быть, это и так, но... назвать — это еще не значит объяснить. По-прежнему в науке существует важная проблема: почему и как вода «помнит», что с нею было.



Знает ли вода, что происходит в космосе?


Этот вопрос затрагивает область столь необыкновенных, столь таинственных, до сих пор совершенно непонятных, наблюдений, что они вполне оправдывают образную формулировку вопроса. Экспериментальные факты как будто бы установлены твердо, но объяснения для них пока еще не найдено.

Поразительная загадка, к которой относится вопрос, была установлена не сразу. Она относится к малозаметному и как будто бы пустяковому явлению, не имеющему серьезного значения. Это явление связано с самыми тонкими и пока непонятными свойствами воды, трудно доступными количественному определению, — со скоростью химических реакций в водных растворах и главным образом со скоростью образования и выпадения в осадок труднорастворимых продуктов реакции. Это тоже
одно из бесчисленных свойств воды.

Так вот, у одной и той же реакции, проводимой в одних и тех же условиях, время появления первых следов осадка непостоянно. Хотя этот факт был давным-давно известен, химики на него внимания не обращали, удовлетворяясь, как это еще часто бывает, объяснением «случайными причинами». Но постепенно, по мере развития теории скоростей реакции и усовершенствования методики исследования, этот странный факт стал вызывать недоумение.

Несмотря на самые тщательные предосторожности в проведении опыта в
совершенно постоянных условиях, результат все равно не воспроизводится: то осадок выпадает сразу, то приходится довольно долго ждать его появления.

Казалось бы, не все ли равно — выпадает осадок в пробирке за одну, две
или через двадцать секунд? Какое это может иметь значение? Но в науке, как и в природе, нет ничего не имеющего значения.

Странная невоспроизводимость все более и более занимала ученых. И наконец был организован и осуществлен совершенно небывалый эксперимент. Сотни добровольных исследователей-химиков во всех частях земного шара по единой, заранее разработанной программе одновременно, в один и тот же момент по мировому времени снова и снова повторяли один и тот же простой опыт: определяли скорость появления первых следов осадка твердой фазы, образующейся в результате реакции в водном растворе. Опыт продолжался почти пятнадцать лет, было проведено более трехсот тысяч повторений.

Постепенно стала вырисовываться удивительная картина, необъяснимая и
загадочная. Оказалось, что свойства воды, определяющие протекание в водной среде химической реакции, зависят от времени.

Сегодня реакция протекает совсем иначе, чем в тот же момент она шла вчера, и завтра она будет идти снова по-другому.

Различия были невелики, но они существовали и требовали внимания, исследования и научного объяснения.

Результаты статистической обработки материалов этих наблюдений привели ученых к поразительному выводу: оказалось, что зависимость скорости реакции от времени для разных частей земного шара совершенно одинаковая.

Это означает, что существуют какие то таинственные условия, изменяющиеся одновременно на всей нашей планете и влияющие на свойства воды.

Дальнейшая обработка материалов привела ученых к еще более неожиданному следствию. Оказалось, что события, протекающие на Солнце, каким-то образом отражаются на воде. Характер реакции в воде следует ритму солнечной активности — появления пятен и вспышек на Солнце.

Но и этого мало. Было обнаружено еще более невероятное явление. Вода
каким-то необъяснимым путем отзывается на то, что происходит в космосе.
Была установлена четкая зависимость от изменения относительной скорости Земли в ее движении в космическом пространстве.

Таинственная связь воды и событий, происходящих во Вселенной, пока
необъяснима. А какое значение может иметь связь между водой и космосом? Никто еще не может знать, насколько оно велико. В нашем теле около 75% воды; на нашей планете нет жизни без воды; в каждом живом организме, в каждой его клеточке протекают бесчисленные химические реакции. Если на примере простой и грубой реакции подмечено влияние событий в космосе, то пока даже и представить себе нельзя, как велико может быть значение этого влияния на глобальные процессы развития жизни на Земле. Наверное, будет очень важной и интересной наука будущего — космобиология. Одним из ее главных разделов станет изучение поведения и свойств воды в живом организме.



Все ли свойства воды понятны ученым?


Конечно нет! Вода — загадочное вещество. До сих пор ученые не могут еще понять и объяснить очень многие ее свойства.

Можно ли сомневаться, что все подобные загадки будут успешно разрешены наукой. Но будет открыто немало новых, еще более удивительных, загадочных свойств воды — самого необыкновенного вещества в мире.





 
Разные разности
Магнитная навигация муравьев
Пустынные муравьи Cataglyphis — настоящие асы навигации. В поисках пищи они удаляются по извилистым тропинкам на несколько сотен метров от своего подземного гнезда. Зато обратно бегут по прямой, срезая все углы и повороты, — как стрела...
Микробы делают чай вкуснее
Что влияет на количество теанина в чае? Этот вопрос исследовали китайские ученые. Они тщательно изучили и сравнили по содержанию теанина 17 сортов чая и выяснили, что все зависит от количества и активности азотфиксирущих бактерий, обитающих на к...
Анатомия «Руанского собора»
В Музее изобразительных искусств имени Пушкина в Москве в феврале и марте прошла необычная выставка. Всего две картины Клода Моне — «Руанский собор в полдень» и «Руанский собор вечером». А рядом были представлены результаты физико-хими...
Пирожное как источник топлива
На волне интереса к биотопливу появилась идея использовать невостребованные хлебобулочные изделия в качестве сырья для биотоплива. А почему бы и нет? Хлеб содержит много крахмала. Он легко расщепляется ферментами на молекулы сахара, которые затем дро...