Альфа и омега жирных кислот | Научно-популярный журнал "Химия и Жизнь"

Альфа и омега жирных кислот
Леенсон И.А.
(«ХиЖ», 2019, №5)

pic_2019_05_36-2.jpgМного лет назад я с женой и тещей гостил у наших знакомых — филолога Аллы Ярхо и математика Саши Звонкина в маленьком городке Градиньяне километрах в десяти к югу от Бордо. Как­-то хозяйка, готовя салат, полила его струйкой какого­-то масла из бутылки. Не владея французским, я не мог прочитать этикетку и потому спросил: «Оливковое?» «Нет, — ответила хозяйка. — В оливковом нет омега-­три, поэтому оно не так полезно». Какое у нее было масло, я не помню, но, к моему стыду, я не знал, что такое «масло омега­-три». Разбирался уже после возвращения домой.

В то время в Интернете информации было несравнимо меньше, чем сейчас. Но дома наличествовали химические учебники, монографии и энциклопедии. Однако даже в солидной монографии И.М. Скурихина и А.П. Нечаева «Всё о пище с точки зрения химика» (1991) никакие «омега» не упоминались. Большинство книг по химии также не уделяли внимания этому вопросу. Они сообщают только, что положение заместителя (или двойной связи) в углеродной цепи по правилам химической номенклатуры обозначают числом: 1-­бромгексан, бутен-­2 и т. п. Иногда вместо цифр используют греческие буквы. По традиции так поступают, например, для аминокислот, причем счет идет начиная с атома углерода, соединенного с карбоксильной группой СООН. Так, в состав природных белков входят α-­аминокислоты: аланин СН3СН(NH2)COOH, валин (СН3)2СНСН(NH2)СООН и другие. Очень важную роль в жизнедеятельности человека играет тормозной нейромедиатор центральной нервной системы γ­аминомасляная кислота H2NCH2CH2CH2CООН (аминогруппа находится у третьего атома углерода, а гамма — третья буква греческого алфавита).

Однако омега — 24-­я буква, и до нее счет заместителей, как правило, не доходит. Выручила Химическая энциклопедия, в третьем томе которой (1992) было сказано, что обозначения «омега» используют диетологи. Они основаны на том, что при метаболизме незаменимых жирных кислот в животном организме положение двойной связи относительно концевого ω­углеродного атома (наиболее удаленного от группы СООН) неизменно. Именно от концевой метильной группы СН3 и идет счет — до первой же двойной связи в молекуле.

Например, в одной из самых распространенных жирных кислот в растительном мире, олеиновой кислоте С18Н35СООН, единственная двойная связь в молекуле находится между 9­-м и 10­-м атомами углерода (считая от концевой группы СН3), поэтому олеиновая кислота относится к ω-­9 кислотам. А самые важные полиненасыщенные жирные кислоты в растительных маслах принадлежат к двум группам: ω­-6 и ω-­3. Так, к ω­-6 относятся линолевая (9,12-­октадиеновая) кислота С17Н31СООН с двумя двойными связями и арахидоновая (5,8,11,14­эйкозатетраеновая) кислота С19Н31СООН с четырьмя двойными связями. Пример кислоты ω­3 — линоленовая (9,12,15-­октадекатриеновая) С17Н29СООН с тремя двойными связями (ее часто называют также альфа-­линоленовой, чтобы отличить от изомера — гамма-­линоленовой кислоты).

Если двойная связь в молекуле жирной кислоты одна, такую кислоту называют мононенасыщенной (МНЖК, англ. MUFA — monounsaturated fatty acid). Если двойных связей несколько, то кислоту называют полиненасыщенной (ПНЖК, англ. PUFA — polyunsaturated fatty acid). Именно полиненасыщенные жирные кислоты обладают наибольшей биологической активностью. Двойные связи в молекулах таких кислот чаще всего сопряженные, то есть разделены одной простой связью и при этом имеют цис­конфигурацию (см. «Химию и жизнь», 2019, 2). Таким образом, «ω­обозначения», принятые в диетологии и в рекламе, следует отличать от обозначений по номенклатуре ИЮПАК, в соответствии с которой счет атомов углерода в цепи начинается с карбоксильной группы СООН. Так в молекуле линолевой (9,12­-октадиеновой) кислоты С17Н31СООН с двумя двойными связями эти сопряженные связи расположены у 9­го и 12­го атома углерода, если счет идет от группы СООН. В то же время эта кислота относится к омега­6 кислотам, если счет начать с концевого атома углерода (он входит в метильную группу СН3). Молекулы природных жирных кислот, как правило, содержат четное число атомов углерода и связываются с молекулами глицерина с образованием сложных эфиров.

В организме человека нет ферментов, умеющих синтезировать жирные кислоты ω-­3 и ω­-6, а они необходимы для жизнедеятельности. И потому должны поступать в готовом виде с пищей — как витамины; это стало известно еще в 30-­е годы. Когда-­то линолевую и линоленовую кислоты считали витаминами («витамин F»). Сейчас же такие кислоты называют незаменимыми (эссенциальными, от англ. essential — обязательный, необходимый, незаменимый). В организме эти кислоты превращаются в более длинные, с 20–22 атомами углерода в цепи и с четырьмя — шестью двойными связями; эти конструкции служат строительным материалом для клеточных мембран и для биосинтеза веществ, регулирующих обменные процессы (простагландинов и лейкотриенов). Считается, что жирные кислоты ω­-3 играют более важную роль по сравнению с кислотами ω-­6. Понимание роли этих кислот появилось сравнительно недавно, в результате работы Ральфа Холмана (Ralph T. Holman) из университета Миннесоты, опубликованной в «The Journal of Nutrition» в феврале 1998 года (том 128, выпуск 2).

Вот почему в справочниках, изданных даже в конце ХХ века, ничего об этом не говорится. Вещества, синтезируемые в организме из ω-­3, обладают противовоспалительной активностью, сосудорасширяющим и антикоагулянтным действиями, нормализуют ритм сердечных сокращений, а некоторые вещества, образующиеся из ω-­6, могут вызывать воспалительные процессы и усиливать коагуляцию крови.

Весьма распространена в растительных маслах линолевая кислота ω­-6 с двумя двойными связями. Много ее синтезируется в подсолнечнике, кукурузе, сое, арахисе. В организме она превращается в γ­линоленовую (6,9,12­-октадекатриеновую) ω-­6 кислоту с тремя двойными связями (см. выше). Возместить недостаток γ-­линоленовой кислоты за счет природных продуктов непросто: она содержится в довольно экзотических источниках — масле бурачника, масле примулы вечерней, масле из семян черной смородины.

Очень важная кислота ω-­3 в растительных маслах — α-­линоленовая кислота с тремя двойными связями (см. выше). Количество и соотношение линолевой и α­линоленовой кислот могут служить, по мнению некоторых диетологов, критерием пищевой ценности растительных масел. Однако в значительных количествах α­-линоленовая кислота содержится лишь в небольшом числе растительных масел, употребляемых в пищу. Кроме того, только незначительная доля этой кислоты превращается в организме в упомянутые выше жирные кислоты с четырьмя — шестью двойными связями, и это — недостаток. Хорошей заменой α-­линоленовой кислоте могут быть жирные кислоты, содержащиеся в жирной рыбе.

Потребность человека в ненасыщенных растительных жирных кислотах — около 10 г в сутки (примерно столовая ложка). В литературе иногда указывается, что желательное соотношение ω­-6 к ω­-3 от 3 к 1 до 5 к 1, этому соответствуют конопляное, льняное и соевое масла (более подробные данные есть, например, в Химической энциклопедии). Кстати, первое место в мире по производству для пищевых целей занимает масло соевое, и это не случайно, поскольку именно в нем содержатся одновременно и линолевая, и линоленовая кислоты в оптимальном соотношении. В специальных диетах при лечении сердечно-­сосудистых заболеваний на долю растительных масел должна приходиться половина или даже две трети жировых продуктов.

И все же к наиболее ценным для здоровья человека полиненасыщенным жирным кислотам ω­-3 относятся 5,8,11,14,17­-эйкозапентаеновая (ЭПК, англ. ЕРА), она же тимнодоновая, с пятью двойными связями, и 4,7,10,13,16,19­-докозагексаеновая (ДГК, англ. DHA), она же цервоновая, с шестью двойными связями. Эти полиненасыщенные жирные кислоты содержатся в жирной рыбе (лосось, сельдь, скумбрия, сардины, печень трески). Они снижают содержание триглицеридов в крови и уменьшают риск сердечно-­сосудистых заболеваний. Сто лет назад обнаружили, что эскимосы не страдают от болезней сердца, но только если придерживаются своей традиционной рыбной диеты.

pic_2019_05_37.jpg

Эти кислоты содержатся в мембранах нервных клеток и играют, как полагают, важную роль в работе мозга, снижают уровень холестерина в крови и препятствуют образованию тромбов, тем не менее их избыточное потребление не приносит пользы. Они важны для правильного развития мозга и нервной системы плода во время беременности и организма ребенка в первые годы его жизни. Однако нужно помнить, что широко рекламируемые пищевые добавки «омега-­3» в капсулах не всегда соответствуют тому, что им приписывают. Например, не доказано, что у детей, принимающих такие БАДы, действительно повышается IQ и снижается риск развития синдрома дефицита внимания, как это пишут в рекламных целях; это — миф.

Многие производители отличают рыбий жир из печени тресковых от более дорогого — из тканей рыб. Рыбий жир, вкус которого нам знаком с детства, — вытяжка из печени рыб. Раньше его действительно рекомендовали всем детям в качестве общеукрепляющего и иммуностимулирующего средства. Потом выяснилось, что употребление такого жира в больших количествах может плохо сказываться на печени и почках. А тот, который появился в продаже сравнительно недавно, добывают из мышечной ткани; среди специалистов он известен как «рыбный жир». Это источник полиненасыщенных жирных кислот, комплекс которых получил название Омега­-3.

«Второе пришествие» рыбьего жира как раз и связано с тем, что был открыт «рыбный жир». Сегодня он обретает все большую популярность. При покупке обращайте внимание на то, из какого жира — печеночного или мышечного — изготовлен препарат. Такая информация должна содержаться на упаковке.

В последние десятилетия в развитых странах заметно изменился рацион питания, в том числе в результате рекламы. Тысячи лет пятую часть калорий люди получали, поедая разные жиры, в основном животные, в которых кислоты ω-­3 и ω-­6 отсутствуют или их мало. В Греции, Италии, Испании и других странах заметную долю рациона традиционно составляли растительные масла и рыба, в котором соотношение ω­-6 к ω-­3 было оптимальным — 4 к 1. В XIX — ХХ веках в предпочтениях жителей развитых стран наметился сдвиг в сторону мяса и маргарина, в результате доля насыщенных жирных кислот в рационе увеличилась. В последние десятилетия люди стали более информированы относительно полезных продуктов питания, но растительные масла давали им в основном ненасыщенные кислоты ω-­6. Сегодня соотношение ω­-6 к ω-­3 в рационе «среднего человека» составляет примерно 15 к 1, что далеко от оптимального.

Поправить дело можно употреблением льняного и рыжикового масла, которые бывают в магазинах. Еще лучше есть больше рыбы и рыбопродуктов, содержащих рыбный жир. При этом достаточно, чтобы в сутки человек потреблял всего 1 г суммы «супержирных кислот»: эйкозапентаеновой и докозагексаеновой. А для этого необязательно даже пить рыбий жир: его вполне можно заменить регулярным включением в рацион рыбы. Лучше всего — морской (тунец, сельдь, лосось, скумбрия, сардина); из речных рыб им не уступают форель, окунь, пресноводная сельдь. При этом непредельные жирные кислоты ω-­9 (к ним относится, например, самая распространенная жирная кислота — олеиновая) не обладают какими-­либо особыми диетическими свойствами и потому не требуют повышенного внимания. Эти кислоты содержатся в большом количестве в говяжьем и свином жире, в оливковом, подсолнечном и кукурузном масле. Они не относятся к незаменимым, поскольку организм человека может их синтезировать сам. Но зато один грамм таких кислот дает организму при полном усвоении много энергии — 9 ккал.

И последнее о жирных кислотах. Нужно знать, что все растительные масла — продукты с ограниченным сроком хранения. Чем больше в масле полиненасыщенных, то есть тех незаменимых жирных кислот, тем быстрее оно окисляется и прогоркает, особенно в тепле, при свободном доступе воздуха и на солнечном свету. Обычно срок годности растительного масла — примерно полгода. Только если оно герметично упаковано в азоте, то может сохраняться до двух лет.



Эта статья доступна в печатном номере "Химии и жизни" (№ 5/2019) на с. 36 — 38.

Еще по теме

prev_2018_01_18.jpg

В 2005 году в нашем журнале уже публиковались краткие обзоры современных мифов: о воде, о еде и питье, о болезнях и лекарствах. Но тема неисчерпаема, а «химическая мифология» популярности не теряет. Недавно четыре венгерских химика из Дебреценского университета написали монографию «100 химических мифов: недоразумения, неверные трактовки, объяснения», которая была переведена на английский язык и выпущена издательством «Шпрингер».

>>
Мифы о продуктах питания | Научно-популярный журнал «Химия и Жизнь»

Тезис о том, что «все продукты сейчас отравлены», — типичное проявление хемофобии, а хемофобия — следствие незнания и деятельности нечистоплотных СМИ. Послушать алармистов, в пищевой промышленности работают вредители, которые коварно отравляют продукты. Однако население земли вовсе не вымирает, а увеличивается, причем быстро, и средняя продолжительность жизни постоянно растет.


>>
prev_2018_03_14.jpg

Лишь очень малая часть синтетических соединений, попадающих в наш организм, когда-либо исследовалась на предмет опасности для здоровья, включая канцерогенность, воздействие на репродуктивную функцию, на внутриутробное развитие, иммунную систему и так далее. Те, которые изучают, — изучают на подопытных животных; на людях это делать неэтично. Кроме того, обычно изучается воздействие отдельных веществ, тогда как в реальной жизни на нас действует их смесь. При этом каждый год на рынке появляется до 1800 новых химических соединений.

>>
prev_2018_04_28.jpg

В июне 2007 года вступил в силу регламент Европейского союза по «регистрации, оценке, авторизации, ограничению производства и использования химических веществ» — Registration, Evaluation, Authorisation and Restriction of Chemicals, сокращенно REACH. В истории Евросоюза это наиболее детально разработанный законодательный акт, занимающий более 1200 страниц текста; в документе 141 статья, дополненная 27 приложениями.


>>
prev_2018_05_24.jpg

«Экологический образ» химической промышленности, мягко выражаясь, оставляет желать лучшего. Когда простой человек слышит или читает что-либо о химических превращениях, то чаще всего это вызывает у него только отрицательные эмоции. Они связаны с загрязнением окружающей среды, с авариями на химических предприятиях, потому что такие аварии благодаря СМИ становятся широко известными. В то же время фармацевтическая промышленность и биотехнология избежали подобной участи: считается, что они не наносят вреда окружающей среде. А как на самом деле?

>>
prev_2018_07_22.jpg

Авторы книги «100 химических мифов» отдают должное Менделееву, его интуиции и уверенности в своей правоте. Ведь он описывал свойства неизвестных элементов, когда многие химики считали, что уже открыты почти все химические элементы! Лишь Менделеев осмелился не только предсказать открытие новых элементов, но и указать их место в таблице и даже их свойства. Потому что он понимал, что периодическая таблица — не просто удобный способ систематики, а закон природы. Всего таких предсказаний он сделал 16. Авторы книги о химических мифах приводят примеры всех таких предсказаний, в том числе и не подтвердившихся.

>>
prev_2018_09_44.jpg

Широкую известность в конце первого десятилетия XXI века получил эксперимент по «удобрению океана» сотрудниками Института полярных и морских исследований в Бременхафене. Они решили проверить, можно ли уменьшить парниковый эффект, вызванный углекислым газом, удобряя океан соединениями железа. Дело в том, что американский океанограф Джон Мартин ранее показал, что для роста планктона в поверхностных слоях океана необходимы микроколичества железа.

>>
prev_2018_10_32.jpg

Свинец — один из семи металлов, известных с древности. Он иногда встречается в самородном виде и легко выплавляется из руды. Однако повышенное содержание свинца в организме приводит к отравлению. Как же он может туда попасть?

>>

prev_2018_11_18.jpg

«Скользкость льда, — пишет известный популяризатор науки Я.И.Перельман в одном из рассказов в «Занимательной физики», — зависит главным образом не от гладкости, а <...> от того, что температура плавления льда понижается при увеличении давления…» Однако ученые и преподаватели продолжают обсуждать физику скольжения коньков на морозе, и приведенное Перельманом «простое объяснение» подвергается сомнению.

>>
prev_2018_12_32.jpg

Пищевые красители, особенно синтетические, вызывают больше всего вопросов и возражений, когда речь заходит о пищевых добавках. Важно еще и то, что часто красители добавляют сверх меры, чтобы придать товару более привлекательный вид. Потому что природные красители в разных фруктах и ягодах часто окрашены недостаточно интенсивно. Не следует думать также, что если краситель «натуральный», то есть выделен из природных источников, то он безвреден — это миф. Вот несколько примеров.

>>