Как делают чипы?

В.В. Панюшкин

Производство крошечных чипов, дающих жизнь ноутбуку, — одно из самых сложных и изощренных. Оно состоит более чем из трех сотен операций, и один производственный цикл может длиться до нескольких недель. Как выглядит этот процесс в упрощенном виде?


Наносим слой кремния


Первое, что необходимо сделать, — создать на поверхности кремниевой подложки диаметром в 30 см дополнительный слой. Атомы кремния наращивают на подложку методом эпитаксии: они постепенно оседают на кремниевую поверхность из газовой фазы. Процесс протекает в вакууме, ничего лишнего здесь нет, поэтому в результате на поверхности образуется тончайший слой чистейшего кремния с той же кристаллической структурой, что и кремниевая подложка, только еще чище. Иными словами, мы получаем несколько улучшенную подложку.


Наносим защитный слой


Теперь на поверхности подложки надо создать защитный слой, то есть попросту окислить ее, чтобы образовалась тончайшая пленка оксида кремния SiO2.

Ее функция очень важна: оксидная пленка в дальнейшем будет мешать электрическому току утекать с пластины. Кстати, в последнее время вместо традиционного диоксида кремния компания Intel стала использовать high-k-диэлектрик на основе оксидов и силикатов гафния, у которых более высокая по сравнению с оксидом кремния диэлектрическая проницаемость k. Слой high-k диэлектрика делают примерно в два раза толще, чем слой обычного SiO2, за счет сужения соседних областей, но благодаря этому при сравнимой емкости ток утечки удается уменьшить в сто раз. Это позволяет продолжать миниатюризацию процессоров.


Наносим слой фоторезиста


На защитный слой оксида кремния необходимо нанести фоторезист — полимерный материал, свойства которого изменяются под воздействием излучения. Чаще всего в этой роли выступают полиметакрилаты, арилсульфоэфиры и фенлформальдегидные смолы, которые разрушаются под воздействием ультрафиолета (этот процесс называется фото- литографией). Их наносят на вращающуюся подложку, опрыскивая ее аэрозолем упомянутого вещества. В принципе можно также использовать электронный луч (электронно-лучевую литографию) или мягкое рентгеновское излучение (рентгеновскую литографию), подбирая к ним соответствующие чувствительные вещества. Но мы рассмотрим традиционный процесс фотолитографии.


s20140424 chip1.jpg


Облучаем ультрафиолетом


Теперь подложка готова к контакту с ультрафиолетом, но не прямому, а через посредника — фотомаску, которая играет роль трафарета. По сути, фотомаска — это рисунок будущей микросхемы, только увеличенный в несколько раз. Чтобы спроецировать его на поверхность подложки, используют специальные линзы, уменьшающие изображение. Это дает поразительную четкость и точность проекции.


s20140424 chip2.jpg


Ультрафиолет, проходя через маску и линзы, проецирует изображение будущей схемы на подложку. На фотомаске будущие рабочие участки интегральной микросхемы прозрачны для ультрафиолета, а пассивные участки — наоборот. В тех местах на подложке, где должны быть расположены активные структурные элементы, облучение разрушает фоторезист. А на пассивных участках разрушение не происходит, потому что туда ультрафиолет не попадает: трафарет он и есть трафарет. Химическая реакция, которая происходит в слое под воздействием ультрафиолета, очень похожа на реакцию в пленке, происходящую во время фотографирования. Разрушенный фоторезист легко растворяется, поэтому убрать с подложки продукты разложения несложно. Кстати, для создания одного процессора бывает необходимо до 30 различных фотомасок, поэтому этап повторяют по мере нанесения слоев друг на друга.


Травим


Итак, рисунок будущей схемы со всеми элементами размером вплоть до нескольких нанометров перенесен на поверхность подложки. Области, где защитный слой разрушился, теперь должны быть вытравлены. При этом пассивные участки не пострадают, поскольку они защищены полимерным слоем фоторезиста, который не разрушился на предыдущей стадии. Облученные области вытравливают либо химическими реагентами, либо физическими методами.

В первом случае, чтобы разрушить слой диоксида кремния, используют составы на основе фтористоводородной кислоты и фторида аммония. Жидкостное травление — дело хорошее, но есть проблема: жидкость так и норовит затечь под слой резиста на соседних пассивных участках. А в результате детали вытравленного рисунка по размеру оказываются больше, чем предусмотрено маской. Поэтому предпочтительнее сухой физический метод — реактивное ионное травление с помощью плазмы. Для каждого материала, подвергаемого сухому травлению, подбирают соответствующий реактивный газ. Так, кремний и его соединения травят хлор- и фторсодержащей плазмой (CCl4 + Cl2 + Ar, ClF3 + Cl2, CHF3, CF4 + H2, C2F6). Правда, у сухого травления тоже имеется недостаток — меньшая по сравнению с жидкостным травлением селективность. К счастью, на этот случай есть универсальный метод — ионно-лучевое травление. Оно пригодно для любого материала или сочетания материалов и обладает наивысшей среди всех методов травления разрешающей способностью, позволяя получать элементы с размером менее 10 нм.


Легируем


Теперь настало время ионной имплантации. Она позволяет внедрить практически любые химические элементы в необходимом количестве на заданную глубину на протравленных участках, где обнажилась кремниевая подложка. Цель этой операции — изменить тип проводимости и концентрацию носителей в объеме полупроводника для получения нужных свойств, например — требуемой плавности p-n-перехода. Самые распространенные легирующие примеси для кремния — это фосфор, мышьяк (обеспечивают электронную проводимость n-типа) и бор (дырочную проводимость p-типа). Ионы имплантируемых элементов в виде плазмы разгоняют до высоких скоростей электромагнитным полем и бомбардируют ими подложку. Энергичные ионы проникают в незащищенные участки, погружаясь в образец на глубину от нескольких нанометров до нескольких микрометров.


s20140424 chip3.jpg


После внедрения ионов фоторезистивный слой удаляют, а полученную конструкцию отжигают при высокой температуре, чтобы восстановилась нарушенная структура полупроводника и ионы лиганда заняли узлы кристаллической решетки. В целом первый слой транзисторов готов.


Делаем окна


Поверх полученного транзистора необходимо нанести изолирующий слой, на котором тем же методом фотолитографии вытравливают три «окна». Через них в дальнейшем будут создаваться контакты с другими транзисторами.


Наносим металл


Теперь всю поверхность пластины покрывают слоем меди с помощью вакуумного напыления. Медные ионы проходят от положительного электрода (анода) к отрицательному электроду (катоду), роль которого играет подложка, и садятся на него, заполняя окна, созданные с помощью травления. Затем поверхность полируют, удаляя лишнюю медь. Металл наносят в несколько этапов, чтобы создать межсоединения (их можно представить как соединительные провода) между отдельными транзисторами.


s20140424 chip4.jpg


Раскладка таких межсоединений определяется архитектурой микропроцессора. Таким образом в современных процессорах устанавливаются связи между примерно 20 слоями, формирующими сложную трехмерную схему. Количество слоев может меняться в зависимости от типа процессора.


Тестируем


Наконец наша пластинка готова к тестированию. Главный контролер здесь — зондовые головки на установках автоматической разбраковки пластин. Прикасаясь к пластинкам, они измеряют электрические параметры. Если что не так — помечают бракованные кристаллы, которые затем отбрасывают. Кстати, кристаллом в микроэлектронике называют единичную интегральную микросхему произвольной сложности, размещенную на полупроводниковой пластине.


Режем


Далее пластины разделяют на единичные кристаллы. На одной подложке диаметром 30 см помещается около 150 микросхем размером примерно 2х2 см. Для разделения пластину либо надрезают алмазным резцом или лазерным лучом, а потом разламывают по готовым надрезам, либо сразу разрезают алмазным диском.


Процессор готов!


После этого соединяют контактную площадку, обеспечивающую связь процессора с остальной системой, кристалл и крышку, отводящую тепло от кристалла к кулеру.


s20140424 chip5.jpg


Процессор готов! По моим (наверняка очень неточным) прикидкам, на изготовление одного современного процессора, такого, например, как четырехъядерный Intel Core i7, необходимо затратить около месяца работы сверхсовременной фабрики и 150 кВт•ч электроэнергии. При этом масса кремния и химикатов, расходуемых на один кристалл, исчисляется максимум граммами, меди — долями грамма, золота для контактов — миллиграммами, а лигандов вроде фосфора, мышьяка, бора — и того меньше.


Словарик


Для тех, кто рискует запутаться в подложках, чипах, процессорах и кристаллах, приводим маленький словарик терминов.

Подложка — круглая монокристаллическая кремниевая пластина диаметром от 10 до 45 см, на которой выращивают полупроводниковые микросхемы методом эпитаксии.

Кристалл, чип, интегральная микросхема — не связанная с другими часть подложки с выращенной на ней многослойной системой транзисторов, соединенных медными контактами. В дальнейшем используется как основная часть микропроцессора.

Лиганд (легирующая примесь) — в случае полупроводниковых материалов вещество, атомы которого встраиваются в решетку кристалла кремния, изменяя его проводимость.

Процессор, микропроцессор — центральный вычислительный элемент современных компьютеров. Состоит из кристалла, помещенного на контактную площадку и закрытого теплоотводящей крышкой.

Фотомаска — полупрозрачная пластина с рисунком, сквозь который проходит свет при облучении фоторезиста.

Фоторезист — полимерный светочувствительный материал, свойства которого, например растворимость, изменяются после воздействия на него определенного типа излучения.

Эпитаксия — закономерный ориентированный рост одного кристалла на поверхности другого. В данном случае слово «кристалл» употребляется в своем основном значении. Существует множество методов получения упорядоченных кристаллов, основанных на эпитаксиальном наращивании.

Разные разности
Камни боли
Недавно в МГУ разработали оптическую методику, позволяющую определить состав камней в живой почке пациента. Это важно для литотрипсии — процедуры, при которой камни дробятся с помощью лазерного инфракрасного излучения непосредственно в почках.
Женщина изобретающая
Пишут, что за последние 200 лет только 1,5% изобретений сделали женщины. Не удивительно. До конца XIX века во многих странах женщины вообще не имели права подавать заявки на патенты, поэтому частенько оформляли их на мужей. Сегодня сит...
Мужчина читающий
Откуда в голове изобретателя, ученого вдруг возникает идея, порой безумная — какое-нибудь невероятное устройство или процесс, которым нет аналогов в природе? Именно книги формируют воображение юных читателей, подбрасывают идеи, из которых выраст...
Пишут, что...
…археологи обнаружили на стоянке мамонтов Ла-Прель в округе Конверс бусину, сделанную из кости зайца, возраст которой составляет около 12 940 лет… …астрофизики впервые обнаружили молекулы воды на поверхности астероидов Ирис и Массалия… ...