Успехи современной микроскопии стимулируют развитие таких наук, как биология, медицина, физика, материаловедение. Однако она, как и любой научный метод, имеет свои принципиальные ограничения. Одно из них — это предел пространственного разрешения, называемый дифракционным. Он примерно равен длине волны видимого света. Другие ограничения накладывают алгоритмы и скорость электронной обработки изображений.
Чтобы преодолеть предел и получать тонкие элементы изображений, исследователи придумали десятки разных техник, базирующихся на различных физических принципах. Как правило, детальной картины достигают, снижая скорость получения изображения, сканируя объект по точкам и делая вычисления по многим кадрам. Высокое разрешение и большая скорость записи изображения «в одном флаконе» — это вызов для микроскопистов. Быстрота получения одного кадра и максимальная частота их следования ограничены современными технологиями, и это не позволяет наблюдать быстрые процессы.
Увеличить скорость получения изображений недавно удалось китайским ученым из нескольких университетов, руководимым профессором Жанг Шианом (Shian Zhang) из Лаборатории прецизионной микроскопии Восточно-китайского педагогического университета в Шанхае. Новейший метод представляет собой комбинацию двух известных.
Первый — это микроскопия временного сжатия, которая позволяет увеличивать скорость записи изображений, потому что получает многочисленные изображения из одного сжатого.
Второй — восстановление картинки с лучшим пространственным разрешением с помощью искусственного интеллекта. Идея эта родилась не на пустом месте. Как известно, в Китае активно развивают интеллектуальные подходы. Здесь повсеместная видеосъемка для социального контроля стали нормой жизни.
Для проверки своего набора алгоритмов, восстановливающих изображения, исследователи провели эксперименты. В них при скорости съемки 1200 кадров в секунду удалось достичь разрешения в 100 нанометров. Объектами служили флуоресцирующие капли размером в 100 мкм, взвешенные в дистиллированной воде. В опытах вода текла по стеклянному микроканалу высотой 10 и шириной 120 микрон.
Профессор уверен, что новый метод дает мощный инструмент для исследования высокоскоростных динамических явлений в гидромеханике. В биомедицине он поможет изучать микропотоки жидких сред, взаимодействия органелл клетки, внутриклеточный транспорт, быстрые изменения в мозгу и т.д. Метод будет полезен в голографии высокого разрешения, профилометрии, для получения когерентных дифракционных изображений. Статья появилась в журнале Advanced Photonics.