Синий свет из глубин полупроводника

С.М. Комаров
(«ХиЖ», 2014, №11)

Нобелевскую премию по физике 2014 года поделили между собой две группы японских ученых: Исаму Акасаки и его ученик Имано Хироси из Нагойского университета, а также Сюдзи Накамура, начинавший свою деятельность в компании «Нития кемикалс» на острове Сикоку, а ныне профессор Калифорнийского университета в Санта-Барбаре. Их достижение — создание надежно работающих синих светодиодов, с помощью которых можно получить белый свет и обеспечить революцию в освещении.


Светодиод основан на способности полупроводника излучать свет, которую впервые обнаружил в 1923 году О.В.Лосев из Ленинградского физико-технического института: он заметил зеленоватое свечение карборунда при пропускании через образец электрического тока (см. «Химию и жизнь», 1999, № 5—6). Источник света в полупроводнике — рекомбинация электронов и дырок, перетекающих через границу двух полупроводников с разными типами проводимости, вследствие чего их энергия превращается в квант света. Однако из-за неразвитости теории Лосев не смог понять сути явления. Только в 60—70-х годах, когда были отлажены технологии работы с полупроводниками, удалось сделать красные, желтые и желто-зеленые светодиоды на основе фосфида и арсенида галлия. Их стали использовать как индикаторные огоньки в различных приборах. А с синим светодиодом поймать удачу долго не удавалось.

Первыми фиолетовые и голубые светодиоды из пленки нитрида галлия на подложке из сапфира сделали в 1971 году исследователи из лаборатории компании RCA (Radio Corporation of America) под руководством Жака Панкова, он же Яков-Исаак Евсеевич Панчешников (который, кстати, родился в 1922 году и, по данным Википедии, в 2014 году еще жив). Однако они работали весьма ненадежно из-за несовершенства пленки. Акасаки и его аспирант Хироси в 80-х годах сумели получить неплохую пленку этого нитрида, нанося ее на слой алюминия. Более того, они обнаружили, что после исследования этой пленки в электронном микроскопе она существенно усиливала свечение. Накамура, который шел своим путем, обратил на это внимание. Ему удалось выяснить причину: электронный луч микроскопа сдувал с поверхности пленки водород, который и препятствовал правильной работе полупроводника. В 1992 году Накамура создал надежную технологию получения пленок нитрида галлия хорошего качества. Компания «Нития кемикалс» ее запатентовала и начала производство. Группа Акасаки также добилась надежной работы светодиодов, созданных по их технологии. Сейчас такие светодиоды представляют собой многослойные структуры, где к нитриду галлия подмешаны индий и алюминий. Потом Накамура сделал еще и синий полупроводниковый лазер, который теперь широко используют для записи дисков Blue Ray, и ультрафиолетовый полупроводниковый лазер.


s20141102 cart3.jpg
Исаму Акасаки


s20141102 cart4.jpg
Амано Хироси


Борьба за синий свет была столь упорной отнюдь не случайно. Светодиоды очень эффективно преобразуют электричество в свет, и всем хотелось использовать их для освещения, заменив низкоэффективные лампы накаливания. Однако из красного и зеленого светодиодов белый свет не сделаешь. Для этого нужен синий — тогда белый получится смешением всех трех цветов. Это дорогой способ, но есть и дешевый, которому, однако, тоже нужен синий свет, — применение люминофора. Его свечение вызывают кванты с высокой энергией — а чем более синий свет (то есть, чем меньше его длина волны), тем больше их энергия. В энергосберегающих люминесцентных лампах, например, пары ртути дают и вовсе ультрафиолетовый свет, который затем преобразуется люминофором в белый.

После создания синего светодиода как раз и стало возможным получать белый свет, применяя люминофор. Именно так работают все бытовые светильники, фонари и прочие устройства такого рода, в изобилии представленные на рынке.

Интервью с профессором Накамурой журнал «Химия и жизнь» публиковал восемь лет назад, в октябре 2006 года, по случаю присуждения ему премии «Миллениум», учрежденной Академией наук Финляндии. Сейчас мы повторяем эту публикацию: никто не расскажет о нобелевской работе лучше самого лауреата.

Разные разности
О чем забыли в круговороте воды
Как быстро вода движется в круговороте на Земле? Начав детально разбираться с этим вопросом, исследователи из США с удивлением обнаружили, что в картине круговорота воды учтены реки, озера и моря, ледники и почва, но блистательно отсутствуют рас...
Микроб 2025 года
Ассоциация общей и прикладной микробиологии назвала булавовидную бактерию Corynebacterium glutamicum микробом 2025 года. За что такая честь? За заслуги перед человечеством.
Пишут, что...
…создан первый в России прототип 50-кубитного квантового вычислителя на одиночных нейтральных атомах рубидия, который успешно протестировали в эксперименте… …у шимпанзе, чья ДНК на 98% совпадает с человеческой, нашли связанные с устойчиво...
Сила яблоневого цвета
В промышленном садоводстве, занятом производством яблок, есть побочный продукт — яблоневый цвет. Эти красивые отходы садоводства прежде никак не использовали. А тут микробиологи из Свободного университета Больцано решили присмотреться к ним повн...