Протез для воспоминаний

Котина Е.
(«ХиЖ», 2011, №8)

vospominanija_1_450.jpgСкажи «чип памяти», и вспомнится вся классика фантастики. Саймон Иллиан из цикла романов о Форкосигане Лоис Буджолд — шеф барраярской контрразведки, идеальную память которого однажды разрушил вражеский вирус. «Джонни Мнемоник» — фильм о нелегкой судьбе курьера, чей мозг используют для транспортировки важной информации (компьютерщики теперь помирают со смеху, когда вспоминают, что потолком Джонни были 160 гигабайт)... А если шагнуть еще дальше в описываемое прошлое и заменить «чип» более общей «компьютерной памятью» — конечно же Великое Кодирование из повести Стругацких «Полдень. XXII век», где личность умирающего ученого переносят на жесткий носитель (судя по объему аппаратуры, ламповый).

Идеи о возможной совместимости между мозгом и механизмом стали появляться, очевидно, сразу же после того, как возникли думающие машины. А поскольку сочинять проще, чем делать, фантасты сильно опередили ученых. Те еще только начинали фиксировать сигналы с электродов, вживленных в различные участки человеческого мозга, и с величайшими предосторожностями посылали обратные сигналы (см. об этом, например, воспоминания Н. П. Бехтеревой), а писатели уже подгружали героям навыки фехтования и иностранные языки либо переносили человеческое «я» в вычислительные машины и вели с ним трогательные диалоги.

Осуществить нечто подобное на практике было непросто по многим причинам. Тут и различие платформ — нейроны с их ионными насосами и нейромедиаторами не очень-то похожи на электросхемы, создаваемые людьми, и высокая степень миниатюризации оборудования, достигнутая природой, и «принцип черного ящика» — о работе нервной системы, здоровой или поврежденной, с самого начала приходилось судить по наблюдению за биообъектом, которым она управляет. Однако нелегко — не значит невозможно, и мы все время видим в новостях сообщения о новых открытиях, связанных с работой мозга. Вот сейчас заговорили о чипе памяти из Калифорнийского университета. Так что там с этим чипом?


Как мы знаем то, что мы знаем


Наше «я» — это в значительной мере наша память. Все, что мы пережили и узнали на своем веку, лица родных и знакомых, места, где мы бывали, факты, названия и определения, привычки и навыки, и сам язык, на котором мы говорим и думаем, — все это, как мы привычно отмечаем, «хранится в памяти». Отними у человека память, и что останется от его личности? А доступ к памяти, казалось, должен разрешить большую часть проблем, связанных с исследованием мозга.

Представление о «хранилищах памяти» фантасты моментально освоили и широко распространили в массах. Мол, достаточно найти доступ к этим секторам жесткого диска у нас в голове, подключиться к разъему, подобрать пароль, и помчатся по монитору потоки цифровых данных, на лету превращаясь в видеозаписи жизни пациента — скажем, любовные сцены или учебный фильм «как мы в первом классе писали заглавную букву «А»... Не тут-то было.

Выяснилось, прежде всего, что факты не откладываются в памяти в виде файлов, аккуратно разложенных по папкам и отсортированных. Больше это похоже на систему перекрестных ссылок. Можно сказать, что о каждом событии существует несколько памятей и различные аспекты хранятся отдельно.

Известный нейробиолог Вилаянур Рамачандран из университета Калифорнии — Сан-Диего в своей замечательной книге «The Tell-tale brain» (2010) рассказывает историю Джона, 60-летнего мужчины, перенесшего операцию по поводу аппендицита. Сгусток крови после операции попал в мозговую артерию, и Джон, к собственному ужасу, не смог узнать свою жену, себя в зеркале. «Я знаю, что это я, — говорил он. — Подмигивает, когда я подмигиваю, и движется, когда я двигаюсь. Ясно, что это мое отражение. Но оно не похоже на меня». — «Мое зрение в порядке, доктор, это в мозгу у меня что-то не фокусируется», — повторял Джон, в прошлом военный пилот. Когда ему показывали морковь, он говорил: «Это длинная штука с пучком на одном конце. Кисточка?» Увидев козу — «какое-то животное, возможно собака». Джон утратил способность мгновенно распознавать объекты, как делает каждый из нас, а «вычислял» их категориальную принадлежность, исходя из отдельных признаков. При этом ни умственные способности, ни речь его не пострадали. Джон мог подробнейшим образом описать морковь, рассказав и о листьях, и о форме, и о цвете, и о способах приготовления. Он старательно перерисовал гравюру с изображением собора Святого Павла, которая была у него дома, скопировав и дефекты печати, но не мог объяснить, что на ней изображено. Он выдергивал цветы вместо сорняков у себя в саду, а в ответ на просьбу нарисовать розу и нарцисс изобразил «марсианские цветы», не существующие в природе. Но подстригать живую изгородь не разучился: для этого не нужно было идентифицировать объекты, достаточно различать неровности.

«Джон великолепно мог видеть, он только не знал, что он видит, — резюмирует Рамачандран и далее пишет: — Ты смотришь, ты видишь, ты понимаешь — это кажется таким же естественным, как то, что вода течет вниз. Только когда появляются какие-то неполадки, как у пациентов вроде Джона, мы понимаем, до чего это сложно. Хотя наша картина мира выглядит единой и согласованной, на самом деле ее создает активность тридцати (или более) различных зрительных областей в коре, каждая из которых имеет множество трудноопределимых функций».

Не следует думать, что речь идет о тридцати фрагментах картинки: ситуация еще сложнее. Когда мы смотрим на стул, продолжает Рамачандран, его изображение отпечатывается на сетчатке нашего глаза, и на этом «понятное» заканчивается. В мозгу у нас нет экранчика, на который проецировалось бы изображение стула для нашего «внутреннего взора». Кстати, эта старомодная метафора мешает осознать простой факт: внутри нашей головы нет никаких глаз, которые могли бы взирать, там идут другие процессы.

Образ стула, передаваясь с сетчатки по зрительным нервам, хранится в нашей памяти в закодированном виде — так, если мы скачаем с торрентов «Завтрак у Тиффани» и откроем его редактором файлов, то не найдем изображения Одри Хепберн. Желающим смотреть кино из чужой памяти предстоит не кропотливый монтаж, а написание программы для воспроизведения видеофайлов неизвестного формата. Которые, кстати, пока еще не скачаны.

Что касается Джона, у него был поврежден один из путей обработки зрительной информации, так называемый вентральный поток «что?» (см. статью «Физиология обмана» в предыдущем номере). Другие пути функционировали нормально, пациент хорошо видел, мог ходить по комнате, не натыкаясь на предметы, но разучился классифицировать их, соотносить изображение с именем объекта — хотя, как в случае с морковью, «теорию помнил». А еще один пациент, названный в книге Дэвидом, не имел проблем с распознаванием лиц, но... «Доктор, эта женщина выглядит в точности как моя мать, но это не она — это чужой человек, который притворяется моей матерью». Фрейдистские объяснения этого заболевания, которое называется «синдром Капгра», оказались несостоятельными, тем более что Дэвид и про свою собаку сказал: «Она выглядит совсем как Фифи, но это не она». На самом деле у пациента был поврежден путь передачи зрительной информации, ведущий к миндалине, — отключилась эмоциональная реакция на увиденное. Казалось бы, где зрительная кора и где миндалина — но отсутствие «правильного» эмоционального отклика на образы перенесло Дэвида в сюрреалистический мир, населенный коварными самозванцами. Хорошо, что аберрация не затронула другие каналы ввода. Услышав по телефону голос матери, Дэвид узнал ее и обрадовался.

Отсюда следует, во-первых, что исследования механизмов памяти еще не скоро будут сопровождаться кинопоказами, придется обойтись менее эффектными примерами. (Впрочем, для тех, кто в курсе дела, они достаточно эффектны.) А во-вторых, не менее важны, чем пресловутые «хранилища памяти», пути доступа к ним — запоминания и воспоминания. Пока мы не разберемся с этим, мы не поймем и принципов кодирования.

Одну из центральных ролей здесь играет гиппокамп — часть старой коры головного мозга, одна из структур лимбической системы. Собственно, это не одна, а две маленькие структуры, симметрично расположенные в двух полушариях, и у человека действительно похожие на морских коньков (а у крысы — скорее на маленькие бананчики). Как многие древние структуры мозга, гиппокамп многофункционален, и одна из важнейших его задач — формирование долговременной памяти.


Ошибка записи


Человек, благодаря которому мы многое узнали о памяти, скончался 2 декабря 2008 года в возрасте 82 лет. Он был всемирно знаменит, однако имя его держали в секрете по этическим соображениям, и ученые ссылались на него, не зная, как его зовут. После смерти «пациента Г.М.» более 2400 тончайших срезов его мозга перевели в цифровой формат и разместили в Интернете (из этого начинания вырос проект «Обсерватория мозга»). Чем он так прославился?

Генри Молашен (Molaison) из штата Коннектикут с детства страдал эпилепсией. Припадки становились чаще и, когда Генри исполнилось 27 лет, случались по нескольку раз в день. Нейрохирург Уильям Бичер Сковилл, знаменитый рискованными, но успешными операциями, взялся помочь молодому человеку. Он заключил, что очаги эпилепсии находятся в темпоральных (височных) зонах коры, и по каким-то причинам решил удалить более обширные участки. Помимо височных участков коры, удалены были значительная часть гиппокампа и миндалины. После этой операции оказалось, что разум Генри не удерживает никаких новых воспоминаний дольше 20 секунд: он не мог запомнить ни имен медсестер, ни как пройти в туалетную комнату. Это произошло в 1953 году, и Генри предстояло прожить еще 55 лет. Его интеллект не пострадал (а был он несколько выше среднего: несмотря на болезнь, Генри успел стать автомехаником), пациент с удовольствием решал кроссворды и смотрел телевизор. Ученые, работавшие с Генри, отзываются о нем как о жизнерадостном и кротком человеке. Он сознавал, что болен, тревожился, что не помнит сказанного минуту назад, но никогда не отказывался поучаствовать в эксперименте, «чтобы принести пользу другим людям».

Случай «пациента Г.М.» показал прежде всего, что память неоднородна: кратковременная память принципиально отличается от долговременной и за превращение свежих воспоминаний в постоянные отвечает именно гиппокамп. Еще интереснее было то, что Генри мог приобретать новые навыки — например, его научили рисовать предметы, которые он видел в зеркале. Впоследствии Генри не мог сказать, кто и когда его этому научил, но как это делается, запомнил.

Гиппокамп бывает поражен при многих заболеваниях, сопровождающихся потерей памяти, таких, как синдром Корсакова, болезнь Альцгеймера. Повреждения в основном затрагивают память о пережитых событиях, но не процедурную память (то есть навыки, умение решать задачи определенного типа). Кроме того, в гиппокампе есть так называемые нейроны места (place cells) — каждый из них активизируется, когда животное или человек находится в определенном месте. Еще в 70-е годы ХХ века было показано, что эти нейроны отвечают за хранение и обработку пространственной информации — за построение «карты местности» в мозгу. Шуточную Игнобелевскую премию 2003 года по медицине получили Элинор Магуайр с коллегами «за доказательство того факта, что у лондонских таксистов есть мозги» (см. «Химию и жизнь», 2004, № 12). На самом деле они показали, что у таксистов область гиппокампа, которая считается ответственной за пространственную память, в среднем больше, чем у людей других профессий, а у опытных таксистов больше, чем у начинающих. (Эту статью легко найти в Интернете — «Proceedings of the National Academy of Sciences of the USA», 2000, т. 97, № 8, с. 4398–4403). По словам самой Элинор, таксисты после церемонии награждения стали узнавать ученую даму в лицо и возить ее бесплатно.

В том же 2003 году в журнале «New Scientist» вышла статья с амбициозным заголовком «Первый в мире протез мозга». В ней рассказывалось о работах Теодора Бергера и его коллег из университета Калифорнии — Лос-Анджелес (UCLA). Группа Бергера объявила о намерении создать искусственный гиппокамп крысы. Они смоделировали гиппокамп как совокупность нейронных сетей (сделать это было не так просто, как сказать: на работу ушли годы). Крысиный гиппокамп, по большому счету, не слишком отличается от человеческого, так что перспективы понятны.

Американский философ Дэниэл Деннет написал: «Когда переключаешься от попыток моделировать вещи с помощью уравнений к производству совершенных компьютерных моделей... ты можешь закончить моделью, тонко моделирующей природу, но ты не понимаешь модель». Это высказывание, чтобы оно не звучало так грустно, можно перевернуть: чтобы создать совершенную модель, не обязательно иметь исчерпывающую информацию об оригинале. В конце концов, протезы сустава или сердечного клапана не повторяют микроструктуру органов, они просто работают так же.

Если создать модель гиппокампа на компьютерном чипе, подать на входные электроды сигналы от других отделов мозга, связанных с гиппокампом, и получить на выходе сигналы, которые генерирует «живой» гиппокамп, то мы получим искусственный аналог этого отдела мозга. Протез, который перекодирует информацию из кратковременной памяти в долговременную. Одна небольшая операция, и нарушения памяти, выбрасывающие человека из нормальной жизни, останутся позади. А дальше — кто знает, как далеко может зайти протезирование?

За первыми успехами снова были годы работы с математическими моделями и с подопытными животными. И вот наконец в этом году появляются победоносные заголовки новостей: «Ученые поселили в мозгу крыс электронную память», «Ученым удалось сделать апгрейд мозга». Группа исследователей из UCLA и университета Уэйк Форест сделала чип, функционально замещающий участок гиппокампа у крысы, и экспериментально проверила, хорошо ли он работает.


Испытания нейропротеза


Крысу нельзя спросить: «Помнишь ли ты?». Для проверки памяти у животных использовали распространенный тест DNMS (delayed nonmatch-to-sample memory task). Крысу помещали в квадратную камеру, в одной из ее стенок имелась поилка, а справа и слева от нее — рычаги, которые экспериментатор мог предъявлять животному или прятать. Сначала крысе показывали один рычаг, справа или слева от поилки, и в ответ на нажатие крыса получала каплю воды. (Естественно, эксперимент организовали так, чтобы у подопытного было желание сотрудничать: крыса не умирала от жажды, но пить хотела.) Потом ничего не происходило до тех пор, пока крыса не касалась носом ячейки с фотоэлементом в противоположной стенке камеры. Тогда крысе предъявляли уже два рычага, и она должна была нажать рычаг не с той стороны, что в первый раз, а с другой: если сначала рычаг был справа, то во второй раз надо было нажимать слева, и наоборот. Выполнив задание правильно, крыса снова получала воду, если же она ошибалась, то воды не получала и в камере на пять секунд выключали свет. (Фаза задержки с поиском фотоэлемента нужна именно для того, чтобы проверить, записалось ли в память положение первого рычага — чем дольше задержка, тем больше вероятность, что крыса забудет, слева он был или справа.)

Понятно, что и при гадании вслепую меньше половины правильных ответов быть не может, но если их число при многократном повторении эксперимента с десятками животных существенно превышает 50% — стало быть, крысы помнят, где был рычаг в первый раз. А если «назначить» группе подопытных тот или иной препарат, или подвергнуть их стрессу, или сделать с ними что-нибудь еще, что подскажет ученым фантазия, — по увеличению или уменьшению числа правильных ответов можно судить о том, как эти факторы влияют на память.


vospominanija_2_600.jpg
Сигналы с 16 электродов, вживленных в гиппокамп крысы, записывали в промежуток времени между предъявлением рычага справа или слева и прикосновением крысы к рычагу. Слева — реальная активность гиппокампа. (По вертикали — номера электродов, по горизонтали — время; верхняя и нижняя четверти — левая и правая зоны СА3, рамкой обведены зоны СА1.) Справа — активность зон СА1, рассчитанная программой MIMO по сигналам СА3. Нетрудно видеть, что расчетный паттерн очень похож на реальный.


Когда в голове крысы закреплялась последовательность «один рычаг — фотоэлемент — другой рычаг», ей (наконец-то!) имплантировали электроды. В гиппокампе есть участки, обозначенные буквами СА (лат. cornu ammonis, «аммонов рог» — другое название гиппокампа). Важную роль в формировании долговременной памяти играет прохождение сигнала от СА3 к СА1. Крысе вживляли с каждой стороны головы (в правый и левый гиппокамп) по два ряда электродов, на расстоянии 200 мкм один от другого, а между рядами — 400 мкм, на глубину 3–4 мм от поверхности коры. Такое расположение как раз соответствовало нужным группам нейронов. В каждом ряду было восемь электродов. Помимо них, некоторым крысам вживляли канюлю — тоненькую трубочку, через которую можно вводить химические вещества прямо в нервную ткань зоны СА3. После операции животные приходили в себя неделю, а затем начинались опыты.

Крыс подсоединяли к записывающей аппаратуре (конечно, таким образом, чтобы провода не стесняли движений). С каждого электрода писали информацию об электрической активности прилегающих нейронов. Результат представляли в виде контурных карт: по вертикальной оси номера электродов, по горизонтальной — время, оттенки цвета — частота в герцах (или вероятность активизации данной зоны в процентах, если речь идет об обобщенных данных). Такие картинки (выражаясь корректно, пространственно-временные паттерны нейронной активности) получали как с СА3, так и СА1. Ключевым периодом для запоминания, что неудивительно, оказались несколько секунд между предъявлением крысе одного рычага и моментом нажатия. С некоторой натяжкой можно сказать, что мы видим запись крысиных «мыслей»: «Ага, теперь правый» и «Ага, теперь левый». (Интересно, что паттерны активности в правом и левом полушарии были неодинаковыми.)


vospominanija_3_600.jpg


«Протез гиппокампа» должен получать на ввод сигналы с СА3 и выдавать то (или хотя бы примерно то), что в норме появляется в СА1. Для этого была создана специальная нелинейная модель MIMO (multi-input/multi-output), которая успешно справилась с задачей (см. рис.). Работая с реальными и расчетными паттернами активности, исследователи научились их классифицировать: «сильными» назвали те, после которых крыса обычно выполняла задание правильно, а «слабыми» те, после которых она обычно ошибалась (в силу каких-то внутренних крысиных причин, плохо запоминая вводную — «кажется, был левый, а может, и правый»).

Эти результаты позволили довольно успешно предсказывать, выполнит крыса задачу или провалится, по наблюдениям за активностью ее мозга во время предъявления первого рычага. «Сильный» сигнал соответствовал отличному запоминанию — даже когда крыс заставляли промедлить лишние 10–20 секунд, они делали мало ошибок. Крысы, выдавшие «слабый» сигнал, как двоечники на экзамене, скатывались к позорным 50%, чуть только их заставляли подождать подольше, но, если два рычага им предъявляли через считанные секунды, все-таки показывали удовлетворительный результат — короткая память у них была. Подобная методика может найти применение в диагностике нарушений памяти.

Однако впереди самое интересное: коррекция памяти. На электроды в области СА1 крысам транслировали «сильный» сигнал, и результаты существенно улучшались даже у тех, собственные сигналы которых были «слабыми». Протез выполнял свою функцию. В качестве дополнительного контроля подавали «бессмысленные» сигналы (мало ли, может быть, электроды просто стимулируют собственную активность клеток!), и они не дали эффекта.


vospominanija_4_650.jpg
Если транслировать в зону СА1 гиппокампа крысы «сильный» сигнал, соответствующий хорошему запоминанию, то число правильных ответов (когда крыса выбирает рычаг с противоположной стороны) резко вырастает. Более того, такая стимуляция корректирует нарушения памяти, вызванные блокатором глутаматного рецептора МК801.


Чтобы окончательно убедиться, опыты повторили на крысах, утративших способность запоминать. Через канюлю, расположенную рядом с электродами, в течение 14 дней вводили МК801 (дизоцилпин) — вещество, блокирующее перенос нейромедиатора глутамата. В итоге бедное животное, совсем как Генри Молашен, не могло запомнить событие, случившееся только что (хотя навык «один рычаг — фотоэлемент — другой рычаг» не утрачивало). Но когда беспамятной крысе передавали «сильный» сигнал, она вновь успешно справлялась с заданием. «Поверните рубильник, и крысы вспомнят. Выключите его, и крысы забудут», — с гордостью говорит доктор Бергер.

Что ж, повод для гордости есть. Сегодня никого не удивляет слуховой протез за ухом у бабушки или дедушки. Если дальнейшие исследования Бергера с соавторами будут успешными, возможно, для наших внуков такими же привычными будут пожилые люди (или молодые, по тем или иным причинам нуждающиеся в идеальной памяти) с двумя коробочками на висках. Кстати, а вы хорошо запомнили то, что сейчас прочитали?


Литература:


Theodore W Berger et al. A cortical neural prosthesis for restoring and enhancing memory. «Journal of Neural Engineering», 2011, т. 8, № 4. doi: 10.1088/1741–2560/8/4/046017.

Разные разности

06.07.2017 10:00:00
...Казанский федеральный университет принял решение прекратить сотрудничество с итальянским хирургом-трансплантологом Паоло Маккиарини, ранее уличенным в этических нарушениях и фальсификации данных («Science», 2017, doi: 10.1126/science.aal1201)...
>>
31.05.2017 14:02:00
...космический аппарат «Кассини» в последний раз прошел мимо Титана, крупнейшего спутника Сатурна, и направляется в область между планетой и ее кольцами, через которую пройдет 22 раза, а затем, в сентябре 2017 года, нырнет в атмосферу Сатурна («Nature», 2017, 544, 7649, 149—150, doi:10.1038/544149a)...
>>
30.04.2017 10:57:00
...международная коллаборация биологов создала дрожжи с искусственными хромосомами — первый эукариотический организм с синтетическим геномом («Science», 2017, 355, 6329, 1040—1044, doi: 10.1126/science.aaf4557, и другие материалы этого номера)...
>>
30.03.2017 14:30:00
...на карликовой планете Церере в астероидном поясе есть органическое вещество, и оно, по-видимому, не занесено извне, а образовалось на месте («Science», 2017, 355, 6326, 719—722, doi: 10.1126/science.aaj2305)...
>>
25.02.2017 11:23:00
...появилось сообщение, что в Гарвардском университете получен металлический водород — материал, способный совершить переворот в энергетике и ракетостроении («Science», 2017, doi: 10.1126/science.aal1579)... >>