Элементы жизни: почему не кремний и не фтор

Никитин М.А.
(«ХиЖ», 2013, №1)

Художник: А.БродскийВ научных представлениях о происхождении жизни в последнее десятилетие происходит настоящая революция, и она далеко не завершена. Прочтение геномов полутора тысяч видов микроорганизмов, с одной стороны, и новые геохимические методы, примененные как к Земле, так и к другим телам Солнечной системы, с другой стороны, принесли огромное количество новых данных о древней Земле и первых шагах жизни. К сожалению, эта информация доступна только на английском языке, а на русском рассказывается лишь о немногих отдельных достижениях в книге Александра Маркова «Рождение сложности» (М., «Corpus», 2010).

Цикл статей, предлагаемый вниманию читателей, отчасти восполнит этот пробел. Автор — научный сотрудник НИИ физико-химической биологии имени А.Н Белозерского (подразделение МГУ), основная область его научных интересов — эволюционная геномика. Статьи представляют собой переработанный курс лекций, которые Михаил Александрович Никитин читает на Летней экологической школе с 2010 года. (Эта школа для старшеклассников, интересующихся биологией, проходит в условиях палаточного лагеря в лесу, большинство преподавателей — действующие ученые либо аспиранты.) Задачей их было напомнить слушателям базовые факты о биогенезе и дать по возможности целостную картину новейших достижений науки, которые еще не скоро попадут в учебники.




Почему все живое состоит из углерода, кислорода, азота и водорода?

Стандартный ответ, который можно найти в литературе: потому, что атомы углерода способны образовывать цепочки и кольца, создавая гигантское разнообразие органических молекул. И потому, что вода — вещество с уникальными свойствами, способное растворять огромное разнообразие веществ, а также стабилизировать температуру за счет высокой теплоемкости, теплоты замерзания и теплоты испарения Экзобиологические исследования (поиски жизни вне Земли) концентрируются на планетах с такой температурой поверхности, при которой возможно существование жидкой воды. Великий астроном Карл Саган жестко критиковал эту позицию, называя ее «водно-углеродным шовинизмом». По его мнению, другим ученым просто не хватает фантазии, чтобы представить себе альтернативную биохимию на иных химических элементах

В фантастике часто можно встретить описания кремнийорганической жизни или жизни, использующей фтороводород либо аммиак в качестве растворителя. Кремний действительно способен образовывать сложные молекулы с длинными цепочками и кольцами атомов. Такой же способностью обладает и бор, на который, насколько мне известно, фантасты не обращали внимания. Воду в качестве растворителя действительно могут заменить NH3 и HF. Однако я придерживаюсь водно-углеродного шовинизма и собираюсь обосновать свою позицию при помощи ядерной физики.

Во Вселенной больше всего водорода, второе место за гелием (рис. 1). Следом идут углерод, кислород и азот. Три легких элемента — литий, бериллий, бор — весьма редки. От кислорода и до титана распространенность элементов плавно убывает, причем элементы с нечетными атомными номерами встречаются реже, чем с четными. Затем идут несколько широко распространенных металлов — хром, марганец, железо, никель. Элементы, следующие за никелем и особенно за цинком, совсем редки.


1. Распространенность элементов во Вселенной (wikipedia.org )


Почему так получается?

Ядра тяжелее дейтерия (тяжелого водорода) образуются в основном в термоядерных реакциях, протекающих в звездах. Простейшая из таких реакций, имеющая самую низкую температуру зажигания, — протон-протонный цикл. Благодаря ему светят Солнце и другие звезды небольшой массы. В этой реакции четыре протона в несколько стадий превращаются в ядро гелия с выделением энергии (D — дейтерий, e+ — позитрон, νe — электронное нейтрино, γ — фотон):

p + p → ²D + e+ + νe + 0,4 МэВ,

²D + p → 3He + γ + 5,49 МэВ,

3He + 3He → 4He + 2p + 12,85 МэВ.

В более массивных звездах (от полутора масс Солнца) зажигается следующая реакция — углерод-азотный цикл. В нем также протоны превращаются в ядра гелия, а ядро углерода выступает в качестве катализатора Второй итог этой реакции — частичное превращение углерода в азот и кислород:

12C + p → 13N + γ + 1,95 МэВ,

13N → 13C + e+ + νe + 1,37 МэВ,

13C + p → 14N + γ + 7,54 МэВ,

14N + p → 15O + γ +7,29 МэВ,

15O → 15N + e+ + νe + 2,76 МэВ,

15N + p → 12C + 4He + 4,96 МэВ.

Так или иначе, со временем в центре звезды кончается водород и образуется скопление гелия. Горение водорода продолжается в тонком слое вокруг гелиевого ядра. Внешние оболочки звезды при этом раздуваются, звезда становится красным гигантом Если масса звезды невелика, то по мере исчерпания водорода в центре оболочка будет сброшена, а горячая гелиевая сердцевина станет видна на небе как белый карлик и за несколько миллионов лет остынет и погаснет.

Жизнь тяжелых звезд оказывается интереснее. Их гелиевая сердцевина разогревается настолько, что в ней зажигается следующая термоядерная реакция — 3-альфа-процесс, превращение гелия в углерод:

4He + 4He → 8Be + γ + 0,09 МэВ,

8Be + 4He → 12C + γ + 7,37 МэВ.

Стареющая звезда получает новый мощный источник энергии и становится сверхгигантом. У более массивных сверхгигантов по мере сгорания гелия начинаются термоядерные реакции с участием углерода и кислорода, в них образуются ядра неона, магния, кремния, серы и так далее — изотопы с четным числом протонов и нейтронов:

12C + 12C → 20Ne + 4He,

12C + 16O → 24Mg + 4He,

16O + 16O → 28Si + 4He,

16C + 20Ne → 32S + 4He.

Выделяющиеся альфа-частицы также могут захватываться ядрами:

20Ne + 4He → 24Mg + γ,

24Mg + 4He → 28Si + γ,

28Si + 4He → 32S + γ.

Чем более тяжелые ядра сливаются, тем быстрее идут реакции. Если горение водорода в массивной звезде растягивается на десятки миллионов лет, то горение гелия продолжается только сотни тысяч лет. Горение углерода и кислорода с образованием неона, магния и кремния занимает сотни лет. Наконец, превращение кремния и серы в металлы занимает сутки. Выделение энергии в этих реакциях заканчивается с образованием ядер 56Ni и 60Zn, синтез более тяжелых ядер происходит уже с поглощением энергии. В центре звезды-сверхгиганта накапливаются металлы, и выделение энергии прекращается. Остывание центра звезды приводит к потере устойчивости — оболочки начинают падать к центру, звезда сжимается и взрывается. Светимость звезды в этот момент возрастает в миллиарды раз, и астрономы говорят о вспышке сверхновой. В нижних слоях ядра образуется огромное количество нейтронов, которые быстро захватываются атомными ядрами. Так синтезируются все возможные тяжелые элементы от натрия и магния до нестабильных трансурановых, как четные, так и нечетные.

Ударная волна разносит все оболочки звезды по космосу, первые тысячи лет после этого они видны как светящаяся планетарная туманность. На месте звезды остается маленький сверхплотный остаток — нейтронная звезда или черная дыра, а большая часть вещества возвращается в газопылевые облака, обогащая их тяжелыми элементами.

Есть несколько типов ядер, которые синтезируются в других процессах. Во-первых, это дейтерий — тяжелый водород. В звездах он быстро превращается в гелий, и считается, что современные запасы дейтерия образовались из водорода вскоре после Большого взрыва, причем от превращения в гелий их предохранило быстрое остывание Вселенной. Во-вторых, три легких элемента — литий, бериллий и бор — в условиях звезд легко превращаются в гелий и углерод, и их синтез происходит в межзвездной среде в реакциях с участием космических лучей. Пики на графике, соответствующие свинцу, урану и торию, означают, что заметная часть этих элементов образовалась путем распада их более тяжелых соседей. Свинец и висмут — два последних стабильных элемента, а уран и торий — два последних относительно стабильных (период полураспада измеряется миллиардами лет).

Таким образом, существование жизни на основе бора запрещено ядерной физикой: малая устойчивость ядра этого элемента приводит к тому, что его содержание во Вселенной в миллион раз меньше, чем кислорода и углерода. Об этом можно сожалеть, потому что химия бора интересна и разнообразна, а в паре с азотом он может образовать близкие аналоги органических соединений углерода (рис. 2):


2. Боразол B3H6 N3 (аналог бензола) и пентаборан B5H9


С кремниевой жизнью сложнее. Хотя сам кремний доступен в изобилии, в присутствии кислорода и воды он склонен образовывать весьма устойчивые нерастворимые силикаты. В отличие от углерода, кремний не образует сложные пи-связи, охватывающие более двух атомов, — а только благодаря пи-связям органические молекулы способны к сложным взаимодействиям со светом, вплоть до фотосинтеза (рис. 3).


3. Декаметилциклопентасилоксан — одно из устойчивых и широко используемых кремнийорганических соединений


Синтез большинства кремнийорганических веществ требует отсутствия воды. Более подходящим растворителем был бы фтороводород HF. Однако единственный устойчивый изотоп фтора — 19F — образуется в звездных ядерных реакциях с весьма малым выходом, и содержание фтора во Вселенной примерно в десять тысяч раз ниже, чем кислорода. Кислород же и углерод являются самыми распространенными элементами Вселенной после водорода и гелия, и неудивительно, что живые организмы состоят в основном из них. Пока остановимся на этом, а в следующем номере расскажем, как возникли первые научные представления о происхождении жизни.

Дальше >>


Элементы жизни: почему не кремний и не фтор

История вопроса

Проблема хиральной чистоты

Фотохимия и «черные курильщики»

Пути восстановления углекислого газа

Происхождение белкового синтеза и генетического кода

Мир вирусов, последний общий предок и происхождение ДНК

Происхождение мембран и мембранной биоэнергетики

Закат «цинкового мира», прокариотная биосфера и происхождение фотосинтеза

Происхождение эукариот

Роль вирусов в происхождении клеточного ядра

Разные разности

07.10.2019 17:00:00

...устройство весом 307 г, прикрепленное к колену пользователя, может генерировать 1,6 микроватта энергии за счет движения ноги при ходьбе...

...брюхоногий моллюск Chrysomallon squamiferum стал первым глубоководным животным, оказавшимся под угрозой исчезновения из-за добычи полезных ископаемых на морском дне...

...водные экстракты кузнечиков, сверчков и шелковичных червей в пять раз богаче антиоксидантами, чем апельсиновый сок...


>>
27.09.2019 12:00:00

Развитие информационных технологий породили много интересных явлений. Одно из них – журналы открытого доступа, из которых несколько лет назад выделилась особая группа так называемых журналов-хищников (predatory journals).

>>
25.09.2019 18:00:00

Британские историки ищут добровольцев для расшифровки записей сэра Хемфри Дэви. Поучаствовать в проекте можно на сайте zooniverse.org

http://bit.ly/HDavy

>>
02.09.2019 17:00:00

...японский космический аппарат «Хаябуса-2» взял образец материала из глубины астероида Рюгу и должен вернуться на Землю в декабре 2020 года...

...разработаны умные очки, компенсирующие возрастную потерю способности глаза к аккомодации...

...у членов парламента Великобритании больше проблем с психическим здоровьем, чем в среднем по популяции...


>>
27.08.2019 16:00:00

В мире сложилась странная ситуация, когда одни стремятся всеми силами уменьшить выбросы углекислого газа, а другие планируют эти выбросы увеличивать – строят всё новые электростанции и котельные для получения энергии из ископаемого топлива

>>