Скоро и детально

И. Иванов
(«ХиЖ», 2023, №5)

Успехи современной микроскопии стимулируют развитие таких наук, как биология, медицина, физика, материаловедение. Однако она, как и любой научный метод, имеет свои принципиальные ограничения. Одно из них — это предел пространственного разрешения, называемый дифракционным. Он примерно равен длине волны видимого света. Другие ограничения накладывают алгоритмы и скорость электронной обработки изображений.

Чтобы преодолеть предел и получать тонкие элементы изображений, исследователи придумали десятки разных техник, базирующихся на различных физических принципах. Как правило, детальной картины достигают, снижая скорость получения изображения, сканируя объект по точкам и делая вычисления по многим кадрам. Высокое разрешение и большая скорость записи изображения «в одном флаконе» — это вызов для микроскопистов. Быстрота получения одного кадра и максимальная частота их следования ограничены современными технологиями, и это не позволяет наблюдать быстрые процессы.

Увеличить скорость получения изображений недавно удалось китайским ученым из нескольких университетов, руководимым профессором Жанг Шианом (Shian Zhang) из Лаборатории прецизионной микроскопии Восточно-китайского педагогического университета в Шанхае. Новейший метод представляет собой комбинацию двух известных.

Первый — это микроскопия временного сжатия, которая позволяет увеличивать скорость записи изображений, потому что получает многочисленные изображения из одного сжатого.

Второй — восстановление картинки с лучшим пространственным разрешением с помощью искусственного интеллекта. Идея эта родилась не на пустом месте. Как известно, в Китае активно развивают интеллектуальные подходы. Здесь повсеместная видеосъемка для социального контроля стали нормой жизни.

Для проверки своего набора алгоритмов, восстановливающих изображения, исследователи провели эксперименты. В них при скорости съемки 1200 кадров в секунду удалось достичь разрешения в 100 нанометров. Объектами служили флуоресцирующие капли размером в 100 мкм, взвешенные в дистиллированной воде. В опытах вода текла по стеклянному микроканалу высотой 10 и шириной 120 микрон.

Профессор уверен, что новый метод дает мощный инструмент для исследования высокоскоростных динамических явлений в гидромеханике. В биомедицине он поможет изучать микропотоки жидких сред, взаимодействия органелл клетки, внутриклеточный транспорт, быстрые изменения в мозгу и т.д. Метод будет полезен в голографии высокого разрешения, профилометрии, для получения когерентных дифракционных изображений. Статья появилась в журнале Advanced Photonics.

Разные разности
Аспирин против рака
В поисках способов борьбы с метастазами на ранней стадии исследователи из Кембриджского университета наткнулись на многообещающий подход. В экспериментах на мышах они обнаружили, что аспирин может повысить иммунитет к метастазам рака.
Меньше рисового зернышка
Разработан удивительный кардиостимулятор — он меньше рисового зерна, 1,8×3,5×1 мм. Установить его можно с помощью одного лишь шприца, то есть с минимальным вмешательством. А рассасывается он в организме сам по себе, когда в нем больше нет н...
«Новое Солнце»
Компания «Алроса» недавно сообщила, что завершила огранку самого крупного бриллианта в истории нашей страны. Бриллиант получил название «Новое Солнце». А сделали его из алмаза весом более 200 карат, найденного в Якутии. За свои выдающи...
Война как экологическая катастрофа
Война — это всегда катастрофа, прежде всего — гуманитарная. Но война — это еще и экологическая катастрофа. Одно из ее проявлений — волки. В годы Великой Отечественной войны на территории Белоруссии и России невероятно расплод...